已知橢圓的短半軸長為,動點(diǎn)在直線為半焦距)上.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求以為直徑且被直線截得的弦長為的圓的方程;
(3)設(shè)是橢圓的右焦點(diǎn),過點(diǎn)的垂線與以為直徑的圓交于點(diǎn),
求證:線段的長為定值,并求出這個定值.

(1),(2),(3)

解析試題分析:(1)求橢圓標(biāo)準(zhǔn)方程,基本方法為待定系數(shù)法.由題意得,因此可解得,.(2)圓的弦長問題,通;癁橹苯侨切,即半徑、半弦長、圓心到直線距離構(gòu)成一個直角三角形. 圓心為,圓心到直線的距離,因此,所求圓的方程為. (3)涉及定值問題,一般通過計算,以算代證.本題有兩種算法,一是利用射影定理,只需求出點(diǎn)上射影的坐標(biāo),即由兩直線方程,因此.二是利用向量坐標(biāo)表示,即設(shè),根據(jù)兩個垂直,消去參數(shù)t,確定.
試題解析:(1)由點(diǎn)在直線上,得
, ∴. 從而.                 2分
所以橢圓方程為.                            4分
(2)以為直徑的圓的方程為
. 其圓心為,半徑.    6分
因為以為直徑的圓被直線截得的弦長為,
所以圓心到直線的距離
所以,解得.所求圓的方程為.  9分
(3)方法一:由平幾知:,
直線,直線,


所以線段的長為定值.                                     13分
方法二:設(shè),



所以,為定值.                             13分
考點(diǎn):橢圓方程,圓的弦長,定值問題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

巳知橢圓的離心率是.
⑴若點(diǎn)P(2,1)在橢圓上,求橢圓的方程;
⑵若存在過點(diǎn)A(1,0)的直線,使點(diǎn)C(2,0)關(guān)于直線的對稱點(diǎn)在橢圓上,求橢圓的焦距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(1)已知定點(diǎn)、,動點(diǎn)N滿足(O為坐標(biāo)原點(diǎn)),,,,求點(diǎn)P的軌跡方程.
(2)如圖,已知橢圓的上、下頂點(diǎn)分別為,點(diǎn)在橢圓上,且異于點(diǎn),直線與直線分別交于點(diǎn)

(。┰O(shè)直線的斜率分別為、,求證:為定值;
(ⅱ)當(dāng)點(diǎn)運(yùn)動時,以為直徑的圓是否經(jīng)過定點(diǎn)?請證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的焦距為,過右焦點(diǎn)和短軸一個端點(diǎn)的直線的斜率為,為坐標(biāo)原點(diǎn).
(1)求橢圓的方程.
(2)設(shè)斜率為的直線相交于、兩點(diǎn),記面積的最大值為,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知點(diǎn)A(1,0)及圓,C為圓B上任意一點(diǎn),求AC垂直平分線與線段BC的交點(diǎn)P的軌跡方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的離心率為,其長軸長與短軸長的和等于6.

(1)求橢圓的方程;
(2)如圖,設(shè)橢圓的上、下頂點(diǎn)分別為,是橢圓上異于的任意一點(diǎn),直線分別交軸于點(diǎn),若直線與過點(diǎn)的圓相切,切點(diǎn)為.證明:線段的長為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知點(diǎn)是離心率為的橢圓上的一點(diǎn),斜率為的直線交橢圓,兩點(diǎn),且、三點(diǎn)互不重合.

(1)求橢圓的方程;(2)求證:直線,的斜率之和為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,設(shè)E:=1(a>b>0)的焦點(diǎn)為F1與F2,且P∈E,∠F1PF2=2θ.求證:△PF1F2的面積S=b2tanθ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓G:.過點(diǎn)(m,0)作圓的切線l交橢圓G于A,B兩點(diǎn).
(1)求橢圓G的焦點(diǎn)坐標(biāo)和離心率;
(2)將表示為m的函數(shù),并求的最大值.

查看答案和解析>>

同步練習(xí)冊答案