【題目】設函數(shù).
(1)若函數(shù)有兩個不同的極值點,求實數(shù)的取值范圍;
(2)若,,,且當時,不等式恒成立,試求的最大值.
【答案】(1);(2)4.
【解析】
(1)求出函數(shù)的導數(shù),得到a,令h(x),根據(jù)函數(shù)的單調(diào)性求出a的范圍即可;
(2)代入a的值,問題轉(zhuǎn)化為k,令F(x)(x>2),求出函數(shù)的導數(shù),根據(jù)函數(shù)的單調(diào)性求出k的最大值即可.
(1)由題意知,函數(shù)的定義域為,
,令,∴,.
令,則由題意可知:直線與函數(shù)的圖像有兩個不同的交點.,令則.
在上單調(diào)遞增,在上單調(diào)遞減,,
又因為,在上遞增,當,;又當,.
∴,又在遞減.當,,結(jié)合,,圖像易得.
實數(shù)的取值范圍為.
(2)當時,.
即:,
∵,∴.
令,則.
令.則.
∴在上單調(diào)遞增.
..
∴函數(shù)在上有唯一零點,即:.
∴時,.即.
當時,,
∴,
∴,∵,∴,∴的最大值為4.
科目:高中數(shù)學 來源: 題型:
【題目】2018年10月28日,重慶公交車墜江事件震驚全國,也引發(fā)了廣大群眾的思考——如何做一個文明的乘客.全國各地大部分社區(qū)組織居民學習了文明乘車規(guī)范.社區(qū)委員會針對居民的學習結(jié)果進行了相關(guān)的問卷調(diào)查,并將得到的分數(shù)整理成如圖所示的統(tǒng)計圖.
(Ⅰ)求得分在上的頻率;
(Ⅱ)求社區(qū)居民問卷調(diào)查的平均得分的估計值;(同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點的值作代表)
(Ⅲ)以頻率估計概率,若在全部參與學習的居民中隨機抽取5人參加問卷調(diào)查,記得分在間的人數(shù)為,求的分布列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某旅游愛好者計劃從3個亞洲國家A1,A2,A3和3個歐洲國家B1,B2,B3中選擇2個國家去旅游.
(1)若從這6個國家中任選2個,求這2個國家都是亞洲國家的概率;
(2)若從亞洲國家和歐洲國家中各選1個,求這兩個國家包括A1,但不包括B1的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左焦點在拋物線的準線上,且橢圓的短軸長為2,分別為橢圓的左,右焦點,分別為橢圓的左,右頂點,設點在第一象限,且軸,連接交橢圓于點,直線的斜率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)若三角形的面積等于四邊形的面積,求的值;
(Ⅲ)設點為的中點,射線(為原點)與橢圓交于點,滿足,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知命題p:函數(shù)f(x)=x2+2mx+1在(-2,+∞)上單調(diào)遞增;命題q:函數(shù)g(x)=2x2+2(m-2)x+1的圖象恒在x軸上方,若p∨q為真,p∧q為假,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,某公園內(nèi)有兩條道路,,現(xiàn)計劃在上選擇一點,新建道路,并把所在的區(qū)域改造成綠化區(qū)域.已知, .
(1)若綠化區(qū)域的面積為1,求道路的長度;
(2)若綠化區(qū)域改造成本為10萬元/,新建道路成本為10萬元/.設(),當為何值時,該計劃所需總費用最?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) ,且在上單調(diào)遞增,且函數(shù)與的圖象恰有兩個不同的交點,則實數(shù)的取值范圍是( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com