10.若直線l1:ax+2y+a+3=0與l2::x+(a+1)y+4=0平行,則實(shí)數(shù)a的值為( 。
A.1B.-2C.1或-2D.-1或2

分析 利用直線與直線平行的性質(zhì)求解.

解答 解:∵直線l1:ax+2y+a+3=0,l2:x+(a+1)y+4=0,l1∥l2,
∴$\frac{a}{1}$=$\frac{2}{a+1}$≠$\frac{a+3}{4}$,
解得a=1或a=-2.
∵當(dāng)a=1時(shí),兩直線重合,
∴a≠1.
∴a=-2.
故選:B.

點(diǎn)評(píng) 本題考查滿足條件的實(shí)數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要注意兩直線的位置關(guān)系的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.一只螞蟻在邊長(zhǎng)分別為3,4,5的三角形的邊上爬行,某時(shí)刻該螞蟻距離三角形的三個(gè)頂點(diǎn)的距離均不小于1的概率是( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{π}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知$|{\overrightarrow a}|=|{\overrightarrow b}|=|{\overrightarrow c}$|=1,且$\overrightarrow a+\overrightarrow b+\sqrt{3}$$\overrightarrow c=0$,則$\overrightarrow a\overrightarrow b+\overrightarrow b\overrightarrow c+\overrightarrow c\overrightarrow a$=$\frac{1}{2}$-$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.求值sin17°cos47°-sin73°cos43°=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知橢圓$\frac{x^2}{4}+\frac{y^2}{16}$=1與$\frac{x^2}{4+n}+\frac{y^2}{16+n}$=1(n>0),則下述結(jié)論中正確的是(  )
A.有相等的長(zhǎng)軸長(zhǎng)B.有相等的焦距C.有相等的離心率D.有相同的頂點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=lnx+$\frac{a}{x}$,其中a∈R.
(1)討論函數(shù)g(x)=f′(x)-$\frac{x}{3}$的零點(diǎn)的個(gè)數(shù);
(2)若函數(shù)φ(x)=xf(x)-a-$\frac{1}{2}$ax2-x有兩個(gè)極值點(diǎn)x1,x2,且x1<x2,求證:x1x2>e2(e為自然對(duì)數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,圓C1,直線C2的極坐標(biāo)方程分別為ρ=4sinθ,ρcos(θ-$\frac{π}{4}$)=2$\sqrt{2}$.求C1與C2交點(diǎn)的極坐標(biāo);(ρ<0,0≤θ<2π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=2sin(2x-$\frac{π}{6}$)-1(x∈R).
(Ⅰ)求函數(shù)f(x)的最小正周期及單調(diào)遞減區(qū)間;
(Ⅱ)若$x∈[{0,\frac{π}{2}}]$,求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知關(guān)于x的方程3x2-2ax+a-1=0(x∈R).
(1)證明不論a取任何實(shí)數(shù)值,方程必有兩個(gè)不相等的實(shí)數(shù)根;
(2)若兩根x1,x2滿足|x1-x2|=$\frac{2}{3}$,求a的值;
(3)若兩根x1,x2滿足x1<2且x2>2,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案