已知等差數(shù)列的前項(xiàng)和為,公差,,且成等比數(shù)列.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)求數(shù)列的前項(xiàng)和公式.
(Ⅰ);(Ⅱ);
解析試題分析:(Ⅰ)本小題主要通過(guò)等差數(shù)列的通項(xiàng)公式和前項(xiàng)和公式化基本量,然后根據(jù)成等比數(shù)列轉(zhuǎn)化為基本量,二者聯(lián)立可求解,于是;
(Ⅱ)本小題首先得出新數(shù)列的通項(xiàng),然后通過(guò)裂項(xiàng)求和可得數(shù)列的前項(xiàng)和為.
試題解析:(Ⅰ)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/0d/3/1semt4.png" style="vertical-align:middle;" />
所以
, 2分
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/5b/9/x755a2.png" style="vertical-align:middle;" />成等比數(shù)列,
所以,即
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/06/9/16tog3.png" style="vertical-align:middle;" />,所以 4分
從而
即數(shù)列的通項(xiàng)公式為:. 6分
(Ⅱ)由,可知 8分
所以, 10分
所以
所以數(shù)列的前項(xiàng)和為 . 13分
考點(diǎn):1.等差數(shù)列;2.裂項(xiàng)求和.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列是首項(xiàng)為1,公差為2的等差數(shù)列,數(shù)列的前n項(xiàng)和.
(I)求數(shù)列的通項(xiàng)公式;
(II)設(shè), 求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知直線的方程為,數(shù)列滿足,其前項(xiàng)和為,點(diǎn)在直線上.
(1)求數(shù)列的通項(xiàng)公式;
(2)在和之間插入個(gè)數(shù),使這個(gè)數(shù)組成公差為的等差數(shù)列,令,試證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知為等差數(shù)列的前項(xiàng)和,且.
(Ⅰ)求的通項(xiàng)公式;
(Ⅱ)求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知等差數(shù)列{an}中,首項(xiàng)a1=1,公差d為整數(shù),且滿足a1+3<a3,a2+5>a4,數(shù)列{bn}滿足bn=,其前n項(xiàng)和為Sn.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若S2為S1,Sm (m∈N*)的等比中項(xiàng),求正整數(shù)m的值.
(3)對(duì)任意正整數(shù)k,將等差數(shù)列{an}中落入?yún)^(qū)間(2k,22k)內(nèi)項(xiàng)的個(gè)數(shù)記為ck,求數(shù)列{cn}的前n項(xiàng)和Tn
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列,分別為等比,等差數(shù)列,數(shù)列的前n項(xiàng)和為,且,,成等差數(shù)列,,數(shù)列中,,
(Ⅰ)求數(shù)列,的通項(xiàng)公式;
(Ⅱ)若數(shù)列的前n項(xiàng)和為,求滿足不等式的最小正整數(shù)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在數(shù)列中,,,對(duì)任意成立,令,且是等比數(shù)列.
(1)求實(shí)數(shù)的值;
(2)求數(shù)列的通項(xiàng)公式;
(3)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)是各項(xiàng)都為正數(shù)的等比數(shù)列,是等差數(shù)列,且,,.
(1)求數(shù)列,的通項(xiàng)公式;
(2)設(shè)數(shù)列的前項(xiàng)和為,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)為數(shù)列的前項(xiàng)和,對(duì)任意的,都有(為正常數(shù)).
(1)求證:數(shù)列是等比數(shù)列;
(2)數(shù)列滿足求數(shù)列的通項(xiàng)公式;
(3)在滿足(2)的條件下,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com