在極坐標(biāo)系中,曲線E:ρsin2θ=2cosθ,過點(diǎn)A(5,α)(α為銳角且tanα=
3
4
)作平行于θ=
π
4
(ρ∈R)的直線l,且l與曲線E分別交于B,C兩點(diǎn).
(1)以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸,取與極坐標(biāo)相同單位長度,建立平面直角坐標(biāo)系,寫出曲線E與直線l的普通方程;
(2)求BC的長.
考點(diǎn):簡單曲線的極坐標(biāo)方程
專題:坐標(biāo)系和參數(shù)方程
分析:(1)利用
x=ρcosθ
y=ρsinθ
即可把極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)設(shè)B(x1,y1),C(x2,y2).聯(lián)立
y=x-1
y2=2x
,利用弦長公式|BC|=
(1+12)[(x1+x2)2-4x1x2]
即可得出.
解答: 解:(1)∵曲線E:ρsin2θ=2cosθ,∴ρ2sin2θ=2ρcosθ,∴y2=2x.
∵點(diǎn)A(5,α),α為銳角且tanα=
3
4
,
sinα=
3
5
,cosα=
4
5

∴x=5cosα=4,y=5sinα=3.
∴A(4,3),
由θ=
π
4
(ρ∈R)的直線l,可得:tanθ=1.
∴直線l的方程為:y-3=x-4,化為y=x-1.
(2)設(shè)B(x1,y1),C(x2,y2).
聯(lián)立
y=x-1
y2=2x
,化為x2-4x+1=0.
∴x1+x2=4,x1x2=1.
∴|BC|=
(1+12)[(x1+x2)2-4x1x2]

=
2×(42-4)

=2
6
點(diǎn)評(píng):本題考查了極坐標(biāo)方程化為直角坐標(biāo)方程、直線與拋物線相交問題轉(zhuǎn)化為方程聯(lián)立可得根與系數(shù)的關(guān)系、弦長公式,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某工廠的A、B、C三個(gè)不同車間生產(chǎn)同一產(chǎn)品的數(shù)量(單位:件)如下表所示.質(zhì)檢人員用分層抽樣的方法從這些產(chǎn)品中共抽取6件樣品進(jìn)行檢測(cè).
車間ABC
數(shù)量50150100
(1)求這6件樣品中來自A、B、C各車間產(chǎn)品的數(shù)量;
(2)若在這6件樣品中隨機(jī)抽取2件進(jìn)行進(jìn)一步檢測(cè),求這2件商品來自相同車間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某人去上班,先跑步,后步行.如果y表示該人所走的距離,x表示出發(fā)后的時(shí)間,則下列圖象符合此人走法的是
 
.(填序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={x|x<
18
}
,m=3
2
,則下列關(guān)系式中正確的是(  )
A、m∈MB、{m}∈M
C、{m}?MD、m∉M

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+bx-a-ab(a≠0),當(dāng)x∈(-1,3)時(shí),f(x)>0;當(dāng)x∈(-∞,-1)∪(3,+∞)時(shí),f(x)<0.
(1)求f(x)在(-1,2)內(nèi)的值域;
(2)若方程f(x)=c在[0,3]有兩個(gè)不等實(shí)根,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x|x-4|.
(Ⅰ)寫出f(x)的單調(diào)區(qū)間;
(Ⅱ)解不等式f(x)<5;
(Ⅲ)設(shè)0<a≤4,求f(x)在[0,a]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

我國西部某省4A級(jí)風(fēng)景區(qū)內(nèi)住著一個(gè)少數(shù)民族村,該村投資了800萬元修復(fù)和加強(qiáng)民俗文化基礎(chǔ)設(shè)施,據(jù)調(diào)查,修復(fù)好村民俗文化基礎(chǔ)設(shè)施后,任何一個(gè)月內(nèi)(每月按30天計(jì)算)每天的旅游人數(shù)f(x)與第x天近似地滿足f(x)=8+
8
x
(千人),且參觀民俗文化村的游客人均消費(fèi)g(x)近似地滿足g(x)=143-|x-22|(元).
(1)求該村的第x天的旅游收入p(x)(單位千元,1≤x≤30,x∈N*)的函數(shù)關(guān)系;
(2)若以最低日收入的20%作為每一天純收入的計(jì)量依據(jù),并以純收入的5%的稅率收回投資成本,試問該村在兩年內(nèi)能否收回全部投資成本?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等腰直角三角形ABC中,∠A=90°,BC=2
2
,D是AB的中點(diǎn),則
CB
CD
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,某數(shù)學(xué)興趣小組想測(cè)量一棵樹CD的高度,他們先在點(diǎn)A處測(cè)得樹頂C的仰角為30°,然后沿AD方向前行10m,到達(dá)B點(diǎn),在B處測(cè)得樹頂C的仰角高度為60°(A、B、D三點(diǎn)在同一直線上).請(qǐng)你根據(jù)他們測(cè)量數(shù)據(jù)計(jì)算這棵樹CD的高度(結(jié)果精確到0.1m).(參考數(shù)據(jù):
2
≈1.414,
3
≈1.732)

查看答案和解析>>

同步練習(xí)冊(cè)答案