設(shè)f(x)=
(x-a)2,x≤0
x+
1
x
+a,x>0
,若f(0)是f(x)的最小值,則a的取值范圍是( 。
A、[-1,2]
B、[-1,0]
C、[1,2]
D、[0,2]
考點(diǎn):函數(shù)的最值及其幾何意義
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用基本不等式,先求出當(dāng)x>0時(shí)的函數(shù)最值,然后結(jié)合一元二次函數(shù)的性質(zhì)進(jìn)行討論即可.
解答: 解:當(dāng)x>0時(shí),f(x)=x+
1
x
+a≥a+2
x•
1
x
=a+2
,此時(shí)函數(shù)的最小值為a+2,
若a<0,則函數(shù)的最小值為f(a)=0,此時(shí)f(0)不是f(x)的最小值,此時(shí)不滿足條件,
若a≥0,則要使f(0)是f(x)的最小值,則滿足f(0)=a2≤a+2,
即a2-a-2≤0
解得-1≤a≤2,
∵a≥0,∴0≤a≤2,
故選:D
點(diǎn)評(píng):本題主要考查函數(shù)最值的求解,根據(jù)基本不等式的性質(zhì)以及一元二次函數(shù)的性質(zhì)是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)y=f(x)在(-∞,0]上單調(diào)遞減,則函數(shù)y=f(|x|)滿足.
A、是奇函數(shù)在(-∞,
1
2
)上遞減
B、是偶函數(shù),在(-∞,0)上遞減
C、是偶函數(shù),在(-∞,0]上遞增
D、是偶函數(shù),在(-∞,1)上遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面上取定一點(diǎn)O,從O出發(fā)引一條射線Ox,再取定一個(gè)長度單位及計(jì)算角度的正方向(取逆時(shí)針方向?yàn)檎头Q建立了一個(gè)極坐標(biāo)系,這樣,平面上任一點(diǎn)P的位置可用有序數(shù)對(duì)(ρ,θ)確定,其中ρ表示線段OP的長度,θ表示從Ox到OP的角度,在極坐標(biāo)下,給出下列命題:
(1)平面上的點(diǎn)A(2,-
π
6
)與B(2,2kπ+
11π
6
)(k∈Z)重合;
(2)方程θ=
π
3
和方程ρsinθ=2分別都表示一條直線;
(3)動(dòng)點(diǎn)A在曲線ρ(cos2
θ
2
-
1
2
)=2上,則點(diǎn)A與點(diǎn)O的最短距離為2;
(4)已知兩點(diǎn)A(4,
3
),B(
4
3
3
,
π
6
),動(dòng)點(diǎn)C在曲線ρ=8上,則△ABC面積的最大值為
40
3
3

其中正確命題的序號(hào)為
 
(填上所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)g(x)=
x
lnx
,f(x)=g(x)-ax.
(1)求函數(shù)g(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在(1,+∞)上是減函數(shù),求實(shí)數(shù)a的最小值;
(3)若?x1,x2∈[e,e2],使f(x1)≤f′(x2)+a成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A=37+C
2
7
•35+C
4
7
•33+C
6
7
•3,B=C
1
7
•36+C
3
7
•34+C
5
7
•32+1,則A-B的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,且在雙曲線上存在異于頂點(diǎn)的一點(diǎn)P,滿足tan
∠PF1F2
2
=2tan
∠PF2F1
2
,則該雙曲線的離心率為( 。
A、
3
B、
5
C、2
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,已知向量
a
=(x,y-2),
b
=(kx,y+2)(k∈R),若|
a
+
b
|=|
a
-
b
|.
(1)求動(dòng)點(diǎn)M(x,y)的軌跡T的方程,并說明該方程表示的曲線的形狀;
(2)當(dāng)k=
4
3
時(shí),已知F1(0,-1)、F2(0,1),點(diǎn)P軌跡T在第一象限的一點(diǎn),且滿足|
PF1
|-|
PF2
|=1,若點(diǎn)Q是軌跡T上不同于點(diǎn)P的另一點(diǎn),問是否存在以PQ為直徑的圓G過點(diǎn)F2,若存在,求出圓G的方程,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若方程
x2
|a|-1
-
y2
2a+3
=1表示的橢圓,則a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x,x>0
x+1,x≤0
,若f(a)+f(1)=0,則實(shí)數(shù)a的值等于( 。
A、3B、1C、-3D、-1

查看答案和解析>>

同步練習(xí)冊(cè)答案