7.從一副沒(méi)有大小王的52張撲克牌中隨機(jī)抽取1張,事件A為“抽得紅桃8”,事件B為“抽得為黑桃”,則事件“A或B”發(fā)生的概率值是$\frac{7}{26}$(結(jié)果用最簡(jiǎn)分?jǐn)?shù)表示).

分析 利用互斥事件概率加法公式求解.

解答 解:∵從一副沒(méi)有大小王的52張撲克牌中隨機(jī)抽取1張,事件A為“抽得紅桃8”,事件B為“抽得為黑桃”,
∴P(A)=$\frac{1}{52}$,P(B)=$\frac{1}{4}$,
∴事件“A或B”發(fā)生的概率值P(A∪B)=P(A)+P(B)=$\frac{1}{52}+\frac{1}{4}$=$\frac{7}{26}$.
故答案為:$\frac{7}{26}$.

點(diǎn)評(píng) 本題考查概率的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意互斥事件概率加法公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.函數(shù)f(x)的圖象如圖所示,曲線BCD為拋物線的一部分.
(Ⅰ)求f(x)解析式; 
(Ⅱ)若f(x)=1,求x的值;
(Ⅲ)若f(x)>f(2-x),求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=\sqrt{3}+tcosα\\ y=2+tsinα\end{array}\right.(t$是參數(shù)),以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,C2曲線的極坐標(biāo)方程為ρ2=4$\sqrt{2}$ρsin($θ+\frac{π}{4}$)-4.
(1)求曲線C2的直角坐標(biāo)方程,并指出其表示何種曲線;
(2)若曲線C1與曲線C2交于A,B兩點(diǎn),求|AB|的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.三次函數(shù)f(x)=ax3+bx2+cx+d的圖象如圖,則它的導(dǎo)函數(shù)f′(x)的圖象最可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.設(shè)數(shù)列{an},{bn}分別為等差數(shù)列和等比數(shù)列.若a1b1=1,a2b2=1,則a3b3的取值范圍是(-∞,0)∪(0,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.焦點(diǎn)在x軸上的橢圓mx2+y2=1的離心率為$\frac{1}{2}$,則m=(  )
A.2B.$\frac{4}{3}$C.$\frac{3}{4}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知函數(shù)y=f(x)是定義在[a,b]上的增函數(shù),其中a,b∈R,且0<b<-a.設(shè)函數(shù)F(x)=[f(x)]2-[f(-x)]2,且F(x)不恒等于0,則對(duì)于F(x)有如下說(shuō)法:
①定義域?yàn)閇-b,b]
②是奇函數(shù)   
③最小值為0
④在定義域內(nèi)單調(diào)遞增
其中正確說(shuō)法的序號(hào)是①②.(寫(xiě)出所有正確的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.z=2+i(i為虛數(shù)單位),則$\frac{{z+2{i}}}{z-1}$=( 。
A.$\frac{5}{2}+\frac{i}{2}$B.$\frac{5}{2}-\frac{i}{2}$C.5+iD.5-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖所示,△ABC內(nèi)接于圓,AD切圓于A,E是BA延長(zhǎng)線上一點(diǎn),連接CE交AD于D點(diǎn).若D是CE的中點(diǎn).求證:AC2=AB•AE.

查看答案和解析>>

同步練習(xí)冊(cè)答案