【題目】已知圓O1和圓O2的極坐標方程分別為ρ=2,ρ2-2ρcos(θ-)=2.
(1)把圓O1和圓O2的極坐標方程化為直角坐標方程;
(2)設兩圓交點分別為A、B,求直線AB的參數(shù)方程,并利用直線AB的參數(shù)方程求兩圓的公共弦長|AB|.
科目:高中數(shù)學 來源: 題型:
【題目】廠為了對新研發(fā)的一種產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到如下數(shù)據(jù):
單價x/元 | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
銷量y/件 | 90 | 84 | 83 | 80 | 75 | 68 |
(1)求線性回歸方程=x+,其中=-20, =- .
(2)預計在今后的銷售中,銷量與單價仍然服從(1)中的關系,且該產(chǎn)品的成本是4元/件,為使工廠獲得最大利潤,該產(chǎn)品的單價應定為多少元?(利潤=銷售收入-成本)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有一個轉盤游戲,轉盤被平均分成10等份(如圖所示),轉動轉盤,當轉盤停止后,指針指向的數(shù)字即為轉出的數(shù)字.游戲規(guī)則如下:兩個人參加,先確定猜數(shù)方案,甲轉動轉盤,乙猜,若猜出的結果與轉盤轉出的數(shù)字所表示的特征相符,則乙獲勝,否則甲獲勝.猜數(shù)方案從以下三種方案中選一種:
A.猜“是奇數(shù)”或“是偶數(shù)”
B.猜“是4的整數(shù)倍數(shù)”或“不是4的整數(shù)倍數(shù)”
C.猜“是大于4的數(shù)”或“不是大于4的數(shù)”
請回答下列問題:
(1)如果你是乙,為了盡可能獲勝,你將選擇哪種猜數(shù)方案,并且怎樣猜?為什么?
(2)為了保證游戲的公平性,你認為應制定哪種猜數(shù)方案?為什么?
(3)請你設計一種其他的猜數(shù)方案,并保證游戲的公平性.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)從某班的一次期末考試中,隨機的抽取了七位同學的數(shù)學(滿分150分)、物理(滿分110分)成績如下表所示,數(shù)學、物理成績分別用特征量表示,
特征量 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
t | 101 | 124 | 119 | 106 | 122 | 118 | 115 |
y | 74 | 83 | 87 | 75 | 85 | 87 | 83 |
求關于t的回歸方程;
(2)利用(1)中的回歸方程,分析數(shù)學成績的變化對物理成績的影響,并估計該班某學生數(shù)學成績130分時,他的物理成績(精確到個位).
附:回歸方程 中斜率和截距的最小二乘估計公式分別為:
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(數(shù)學文卷·2017屆江西省玉山一中高三上學期第二次月考第16題)中國傳統(tǒng)文化中很多內容體現(xiàn)了數(shù)學的對稱美,如圖所示的太極圖是由黑白兩個魚形紋組成的圓形圖案,充分展現(xiàn)了相互轉化、對稱統(tǒng)一的形式美、和諧美.給出定義:能夠將圓O的周長和面積同時平分的函數(shù)稱為這個圓的“優(yōu)美函數(shù)”.給出下列命題:①對于任意一個圓O,其“優(yōu)美函數(shù)”有無數(shù)個;②函數(shù)可以是某個圓的“優(yōu)美函數(shù)”;③正弦函數(shù)可以同時是無數(shù)個圓的“優(yōu)美函數(shù)”;④函數(shù)是“優(yōu)美函數(shù)”的充要條件為函數(shù)的圖象是中心對稱圖形.其中正確的命題是__(寫出所有正確命題的序號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】國際奧委會將于2017年9月15日在秘魯利馬召開130次會議決定2024年第33屆奧運會舉辦地。目前德國漢堡、美國波士頓等申辦城市因市民擔心賽事費用超支而相繼退出。某機構為調查我國公民對申辦奧運會的態(tài)度,選了某小區(qū)的100位居民調查結果統(tǒng)計如下:
(1)根據(jù)已有數(shù)據(jù),把表格數(shù)據(jù)填寫完整;
(2)能否在犯錯誤的概率不超過5%的前提下認為不同年齡與支持申辦奧運無關?
(3)已知在被調查的年齡大于50歲的支持者中有5名女性,其中2位是女教師,現(xiàn)從這5名女性中隨機抽取3人,求至多有1位教師的概率.
附: , .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)在處的切線經(jīng)過點
(1)討論函數(shù)的單調性;
(2)若不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】【選修4-4:坐標系與參數(shù)方程】
在平面直角坐標系中,以坐標原點為極點, 軸的正半軸為極軸建立極坐標系.已知曲線的極坐標方程為.傾斜角為,且經(jīng)過定點的直線與曲線交于兩點.
(Ⅰ)寫出直線的參數(shù)方程的標準形式,并求曲線的直角坐標方程;
(Ⅱ)求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com