【題目】如圖,已知平面ABCD,四邊形ABEF為矩形,四邊形ABCD為直角梯形,,,.

1求證:平面BCE;

2求證:平面BCE;

3求三棱錐的體積.

【答案】1詳見解析2詳見解析3

【解析】

試題分析:1證明線面平行,一般利用線面平行判定定理,即從線線平行出發(fā)給予證明,而線線平行,一般從平幾條件尋找或證明,本題利用矩形性質(zhì)得到,注意運用線面平行判定定理時,要寫全定理條件,尤其線在面外這個條件2證明線面垂直,一般多次利用線面垂直判定及性質(zhì)定理進行論證,本題由平面ABCD,,可得;在直角梯形ABCD中,利用平幾條件可計算出,這樣就可由定理證明結論3先調(diào)整頂點,轉化為易求高的三棱錐:,再利用線面垂直判定及性質(zhì)定理證明AB上高線CM為所求高,最后代入三棱錐體積公式求值.

試題解析:1因為四邊形ABEF為矩形,所以.

平面BCE,平面BCE.

所以平面BCE.

2過C作,垂足為M,因為,所以四邊形ADCM為矩形,

,又,,,

,.

平面ABCD,平面ABCD,.

平面BCE,,平面BCE.

3平面ABCD,.

平面ABEF,平面ABEF,,

平面ABEF.

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中

I)若a=1,求在區(qū)間[0,3]上的最大值和最小值;

II)解關于x的不等式

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】大西洋鮭魚每年都要逆流而上,游回產(chǎn)地產(chǎn)卵,經(jīng)研究發(fā)現(xiàn)鮭魚的游速可以表示為函數(shù)y=log3,單位是m/s,θ是表示魚的耗氧量的單位數(shù).

(1)當一條鮭魚的耗氧量是900個單位時,它的游速是多少?

(2)計算一條魚靜止時耗氧量的單位數(shù)。

(3)某條鮭魚想把游速提高1 m/s,那么它的耗氧量的單位數(shù)是原來的多少倍?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某單位建造一間地面面積為12的背面靠墻的矩形小房,由于地理位置的限制,房子側面的長度不得超過米,房屋正面的造價為400/,房屋側面的造價為150/,屋頂和地面的造價費用合計為5800元,如果墻高為3,且不計房屋背面的費用.

1)把房屋總價表示成的函數(shù),并寫出該函數(shù)的定義域;

2)當側面的長度為多少時,總造價最低?最低總造價是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)>0, ≠1, ≠﹣1),是定義在(﹣1,1)上的奇函數(shù).

(1)求實數(shù)的值;

(2)當=1時,判斷函數(shù)在(﹣1,1)上的單調(diào)性,并給出證明;

(3)若,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于在區(qū)間上有意義的函數(shù),滿足對任意的,,有恒成立,厄稱上是“友好”的,否則就稱上是“不友好”的,現(xiàn)有函數(shù).

(1)若函數(shù)在區(qū)間)上是“友好”的,求實數(shù)的取值范圍;

(2)若關于的方程的解集中有且只有一個元素,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在半徑為,圓心角為的扇形金屬材料中剪出一個長方形,并且的平分線平行,設.

(1)試將長方形的面積表示為的函數(shù);

2若將長方形彎曲,使重合焊接制成圓柱的側面,當圓柱側面積最大時,求圓柱的體積(假設圓柱有上下底面);為了節(jié)省材料,想從△中直接剪出一個圓面作為圓柱的一個底面,請問是否可行?并說明理由.

(參考公式:圓柱體積公式.其中是圓柱底面面積,是圓柱的高;等邊三角形內(nèi)切圓半徑.其中是邊長)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在每年的春節(jié)后,某市政府都會發(fā)動公務員參與到植樹綠化活動中去.林業(yè)管理部門在植樹前,為了保證樹苗的質(zhì)量,都會在植樹前對樹苗進行檢測.現(xiàn)從甲、乙兩種樹苗中各抽測了10株樹苗,量出它們的高度如下(單位:厘米):

甲:37,21,31,2029,1932,2325,33;

乙:1030,4727,46,14,26,10,4446

1)畫出兩組數(shù)據(jù)的莖葉圖,并根據(jù)莖葉圖對甲、乙兩種樹苗的高度作比較,寫出兩個統(tǒng)計結論;

2)設抽測的10株甲種樹苗高度平均值為,將這10株樹苗的高度依次輸入,按程序框(如圖)進行運算,問輸出的S大小為多少?并說明S的統(tǒng)計學意義.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】班上有四位同學申請A,B,C三所大學的自主招生,若每位同學只能申請其中一所大學,且申請其中任何一所大學是等可能的.
(1)求恰有2人申請A大學或B大學的概率;
(2)求申請C大學的人數(shù)X的分布列與數(shù)學期望E(X).

查看答案和解析>>

同步練習冊答案