設(shè)a,b為實(shí)數(shù),則“a>b>0是
1
a
1
b
”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分又不必要條件
考點(diǎn):必要條件、充分條件與充要條件的判斷
專題:推理和證明
分析:根據(jù):若
1
a
1
b
1
a
-
1
b
=
b-a
ab
<0,a>b>0或0>a>b;由充分必要條件的定義可判斷.
解答: 解:若a>b>0,則
1
a
-
1
b
=
b-a
ab
<0,即
1
a
1
b
出成立.
1
a
1
b
1
a
-
1
b
=
b-a
ab
<0,a>b>0或0>a>b
所以“a>b>0是
1
a
1
b
”的充分不必要條件.
故選:A
點(diǎn)評(píng):本題簡(jiǎn)單的考查了作差分解因式,判斷大小;充分必要條件的判斷方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若實(shí)數(shù)x,y滿足
x+2y-4≤0
x≥0
y≥0
,則z=
y+2
x-1
的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列敘述正確的是( 。
A、若|a|=a,則a>0
B、若a≠b,則|a|≠|(zhì)b|
C、若|a|=|b|,則a=b
D、若a=-b,則|a|=|b|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將溶液自深為18cm、上端圓直徑為12cm的正圓錐形漏斗漏入一個(gè)直徑為10cm的圓柱形筒中.已知開(kāi)始時(shí)漏斗中盛滿了水,且當(dāng)水在漏斗中深為12cm時(shí),其液面下落速度為1cm/min,問(wèn):此時(shí)圓柱筒中的液面上升速度是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

復(fù)數(shù)z滿足條件|z-i|+|z+i|=2,那么|z+i+1|的最大值為
 
,此時(shí)復(fù)數(shù)z為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=asinx-x+b(a,b均為正常數(shù)).
(1)求證:函數(shù)f(x)在(0,a+b]內(nèi)至少有一個(gè)零點(diǎn);
(2)設(shè)函數(shù)在x=
π
3
處有極值.
①對(duì)于一切x∈[0,
π
2
],不等式f(x)>
2
sin(x+
π
4
)恒成立,求b的取值范圍;
②若函數(shù)f(x)在區(qū)間(
m-1
3
π,
2m-1
3
π)上是單調(diào)增函數(shù),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知?jiǎng)訄AP與圓C1:(x+1)2+y2=
1
8
外切,與圓C2(x-1)2+y2=
49
8
內(nèi)切.
(1)求動(dòng)圓的圓心P的軌跡C的方程;
(2)設(shè)點(diǎn)M(
1
4
,0),是否存在過(guò)點(diǎn)F(1,0)且與x軸不垂直的直線l與軌跡C交于A、B兩點(diǎn),使得
MA
+
MB
AB
?若存在,求出直線l的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a(x-
1
x
)-2lnx(a∈R),g(x)=-
a
x
,若至少存在一個(gè)x0∈[1,e],使f(x0)>g(x0)成立,則實(shí)數(shù)a的范圍為( 。
A、[λ,+∞)
B、(0,+∞)
C、[0,+∞)
D、(G(x),+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖是某幾何體的三視圖,其俯視圖是半徑為2的圓,則該幾何體的表面積為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案