已知數(shù)列{an}的首項(xiàng)a1=a,an=數(shù)學(xué)公式an-1(n∈N*,n≥2),若bn=an-2(n∈N*
(I)問(wèn)數(shù)列{bn}是否構(gòu)成等比數(shù)列?并說(shuō)明理由.
(II)若已知a1=1,設(shè)數(shù)列{an•bn}的前n項(xiàng)和為Sn,求Sn

解:(I)b1=a1-2,an=bn+2.

所以,當(dāng)a≠2時(shí),數(shù)列bn構(gòu)成等比數(shù)列;
當(dāng)a=2時(shí),數(shù)列bn不構(gòu)成等比數(shù)列.
(II)當(dāng)a=1,得,,
所以=
分析:(I)利用bn=an-2代入an=an-1,整理得,進(jìn)而可知當(dāng)a≠2時(shí),數(shù)列bn構(gòu)成等比數(shù)列;當(dāng)a=2時(shí),數(shù)列bn不構(gòu)成等比數(shù)列.
(II)利用等比數(shù)列的通項(xiàng)公式求得bn,進(jìn)而根據(jù)bn=an-2求得an,則數(shù)列{an•bn}的通項(xiàng)公式可得,最后利用等比數(shù)列的求和公式求得答案.
點(diǎn)評(píng):本題主要考查了等比數(shù)列的性質(zhì),等比數(shù)列的通項(xiàng)公式和求和公式的運(yùn)用.考查了學(xué)生綜合運(yùn)用等比數(shù)列的基礎(chǔ)知識(shí)的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的首項(xiàng)a1=
1
2
,前n項(xiàng)和Sn=n2an(n≥1).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)b1=0,bn=
Sn-1
Sn
(n≥2)
,Tn為數(shù)列{bn}的前n項(xiàng)和,求證:Tn
n2
n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的首項(xiàng)為a1=2,前n項(xiàng)和為Sn,且對(duì)任意的n∈N*,當(dāng)n≥2,時(shí),an總是3Sn-4與2-
52
Sn-1
的等差中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=(n+1)an,Tn是數(shù)列{bn}的前n項(xiàng)和,n∈N*,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•江門(mén)一模)已知數(shù)列{an}的首項(xiàng)a1=1,若?n∈N*,an•an+1=-2,則an=
1,n是正奇數(shù)
-2,n是正偶數(shù)
1,n是正奇數(shù)
-2,n是正偶數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的首項(xiàng)為a1=3,通項(xiàng)an與前n項(xiàng)和sn之間滿(mǎn)足2an=Sn•Sn-1(n≥2).
(1)求證:數(shù)列{
1Sn
}
是等差數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)求數(shù)列{an}中的最大項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的首項(xiàng)a1=
2
3
,an+1=
2an
an+1
,n∈N+
(Ⅰ)設(shè)bn=
1
an
-1
證明:數(shù)列{bn}是等比數(shù)列;
(Ⅱ)數(shù)列{
n
bn
}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案