已知函數(shù)f(x)=2sinxcox-1.
(1)求f(
π
4
)的值及f(x)的最小正周期;    
(2)求f(x)的最大值和最小值.
考點(diǎn):二倍角的正弦,三角函數(shù)的最值
專題:三角函數(shù)的求值
分析:(1)由條件利用二倍角的正弦公式可得函數(shù)f(x)=sin2x-1,由此求得f(
π
4
)的值,以及f(x)的最小正周期.
(2)根據(jù)f(x)=sin2x-1,利用正弦函數(shù)的值域求得函數(shù)的最大值和最小值.
解答: 解:(1)∵函數(shù)f(x)=2sinxcox-1=sin2x-1,
∴f(
π
4
)=sin
π
2
-1=1-1=0,f(x)的最小正周期為
2
=π.
(2)∵f(x)=sin2x-1,故函數(shù)的最大值為2-1=1,最小值為-2-1=-3.
點(diǎn)評:本題主要考查二倍角的正弦公式,三角函數(shù)的周期性及求法,正弦函數(shù)的值域,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)y=x2-ax+b,A={x|y-x=0},B={x|y-ax=0},若A={-3,1},試用列舉法表示集合B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(
1
2
,
1
2
sin2x+
3
2
cos2x)與
n
=(1,y)共線,且有函數(shù)y=f(x).
(1)求函數(shù)y=f(x)的周期及單調(diào)增區(qū)間;
(2)若銳角△ABC,三內(nèi)角分別為A,B,C,f(A-
π
3
)=
3
,邊BC=
7
,cosB=
2
7
7
,求AC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:函數(shù)y=logm(6-mx)在[1,2]上單調(diào)遞減.
(1)求實數(shù)m的取值范圍;
(2)命題q:方程x2-2x+m+1=0在(0,+∞)內(nèi)有一個根.若p或q為真,p且q為假,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=ax2+bx+c(a≠0)的圖象過點(diǎn)(0,3),對稱軸為x=2,且方程f(x)=0的兩實根平方和為10.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)設(shè)函數(shù)g(x)=
1+x
1-x
+lgf(x)的定義域為M,求M;
(Ⅲ)求h(x)=m×2x+2+3×4x(m>-3)在x∈M時的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an},滿足a8=5,且a1,a4,a5成等比數(shù)列.
(1)求an;
(2)若{an}的前n項和為Sn,則當(dāng)n為何值時,Sn有最小值?
(3)若bn=|an|,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從5雙不同鞋子中任取四只,恰有一雙是原配鞋子的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若0<x<1,則f(x)=x(1-x)的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

3log34=
 

查看答案和解析>>

同步練習(xí)冊答案