年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年陜西省高三高考模擬考試(八)理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知,直線,為平面上的動(dòng)點(diǎn),過點(diǎn)作的垂線,垂足為點(diǎn),且.
(1)求動(dòng)點(diǎn)的軌跡曲線的方程;
(2)設(shè)動(dòng)直線與曲線相切于點(diǎn),且與直線相交于點(diǎn),試探究:在坐標(biāo)平面內(nèi)是否存在一個(gè)定點(diǎn),使得以為直徑的圓恒過此定點(diǎn)?若存在,求出定點(diǎn)的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆浙江效實(shí)中學(xué)高二上期末考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖所示的曲線是由部分拋物線和曲線“合成”的,直線與曲線相切于點(diǎn),與曲線相切于點(diǎn),記點(diǎn)的橫坐標(biāo)為,其中.
(1)當(dāng)時(shí),求的值和點(diǎn)的坐標(biāo);
(2)當(dāng)實(shí)數(shù)取何值時(shí),?并求出此時(shí)直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年河南省盧氏一高高三上學(xué)期期末調(diào)研考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)已知函數(shù)有兩個(gè)極值點(diǎn),且直線與曲線相切于點(diǎn).
(1) 求和
(2) 求函數(shù)的解析式;
(3) 在為整數(shù)時(shí),求過點(diǎn)和相切于一異于點(diǎn)的直線方程
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年天津市高三4月月考文科數(shù)學(xué)試卷(解析版) 題型:填空題
直線與曲線相切于點(diǎn),則 。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com