【題目】已知圓C經過點,且圓心在直線上,又直線與圓C交于P,Q兩點.
(1)求圓C的方程;
(2)若,求實數的值;
(3)過點作直線,且交圓C于M,N兩點,求四邊形的面積的最大值.
【答案】(1)x 2 +y 2 =4(2)k=0(3)7
【解析】試題分析:(1)設圓心為,半徑為.故,建立方程,從而可求圓的方程;(2)利用向量的數量積公式,求得,計算圓心到直線的距離,即可求解實數的值;(3)方法1、設圓到直線的距離分別為,求得,根據垂徑定理和勾股定理,可得,在利用基本不等式,可求四邊形面積的最大值;方法2、利用弦長公式, ,表示三角形的面積,在利用基本不等式,可求四邊形面積的最大值.
試題解析:(1)設圓心為,半徑為.故,易得,
因此圓的方程為.
(2)因為,且與的夾角為,
故, ,所以到直線的距離,又,所以.
又解:設P, ,則,即,
由得,∴,
代入得,∴;
(3)設圓心到直線的距離分別為,四邊形的面積為.
因為直線都經過點,且,根據勾股定理,有,
又,
故
當且僅當時,等號成立,所以.
(3)又解:由已知,由(2)的又解可得,
同理可得,
∴
,
當且僅當時等號成立,所以.
科目:高中數學 來源: 題型:
【題目】首屆世界低碳經濟大會在南昌召開,本屆大會以“節(jié)能減排,綠色生態(tài)”為主題,某單位在國家科研部門的支持下,進行技術攻關,采用了新式藝,把二氧化碳轉化為一種可利用的化工產品,已知該單位每月的處理量最少為300噸,最多為600噸,月處理成本(元)與月處理量(噸)之間的函數關系可近似地表示為,且每處理一噸二氧化碳得到可利用的化工產品價值為200元.
(1)該單位每月處理量為多少噸時,才能使每噸的平均處理成本最低?
(2)該單位每月能否獲利?如果獲利,求出最大利潤;如果不獲利,則需要國家至少補貼多少元才能使該單位不虧損?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x+ +b,其中a,b是常數且a>0.
(1)用函數單調性的定義證明f(x)在區(qū)間(0, ]上是單調遞減函數;
(2)已知函數f(x)在區(qū)間[ ,+∞)上是單調遞增函數,且在區(qū)間[1,2]上f(x)的最大值為5,最小值為3,求a的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(文科選做)如圖,在棱長為1的正方體ABCD-A1B1C1D1中,點E、F分別是棱BC,CC1的中點,P是側面BCC1B1內一點,若A1P∥平面AEF,則線段A1P長度的取值范圍是_____。
(理科選做)在正方體ABCD-A1B1C1D1中,點E為BB1的中點,則平面A1ED與平面ABCD所成的銳二面角的余弦值為________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=cos4x﹣sin4x.下列結論正確的是( )
A.函數f(x)在區(qū)間[0, ]上是減函數
B.函數f(x)的圖象關于原點對稱
C.f(x)的最小正周期為
D.f(x)的值域為[﹣ , ]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=Asin(ωx+α)(A>0,ω>0,﹣ <α< )的最小正周期是π,且當x= 時,f(x)取得最大值2.
(1)求f(x)的解析式,并作出f(x)在[0,π]上的圖象(要列表);
(2)將函數f(x)的圖象向右平移m(m>0)個單位長度后得到函數y=g(x)的圖象,且y=g(x)是偶函數,求m的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某班級有50名學生,其中有30名男生和20名女生,隨機詢問了該班五名男生和五名女生在某次數學測驗中的成績,五名男生的成績分別為86,94,88,92,90,五名女生的成績分別為88,93,93,88,93,下列說法正確的是( )
A.這種抽樣方法是一種分層抽樣
B.這種抽樣方法是一種系統(tǒng)抽樣
C.這五名男生成績的方差大于這五名女生成績的方差
D.該班男生成績的平均數大于該班女生成績的平均數
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從某居民區(qū)隨機抽取10個家庭,獲得第i個家庭的月收入xi(單位:千元)與月儲蓄yi(單位:千元)的數據資料,算得 =80, =20, iyi=184, =720.(b= )
(1)求家庭的月儲蓄y對月收入x的線性回歸方程;
(2)判斷變量x與y之間是正相關還是負相關;
(3)若該居民區(qū)某家庭月收入為7千元,預測該家庭的月儲蓄.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com