14.已知點(diǎn)P在曲線$y=\frac{1}{e^x}(x>0)$上,α為曲線在點(diǎn)P處的切線的傾斜角,則α的取值范圍是($\frac{3π}{4}$,π).

分析 求出函數(shù)的導(dǎo)數(shù),計(jì)算切線的斜率,從而求出傾斜角的范圍即可.

解答 解:y′=-e-x,
y′|x=0=-1,
根據(jù)傾斜角的范圍是(0,π),
而函數(shù)y=$\frac{1}{{e}^{x}}$在(0,+∞)遞減,
故-1<tanα<0,
故$\frac{3π}{4}$<α<π,
故答案為:($\frac{3π}{4}$,π).

點(diǎn)評(píng) 本題考查了切線斜率問(wèn)題,考查切線的傾斜角,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.圓x2+y2-2y-3=0的圓心坐標(biāo)是(0,1),半徑2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=(1-m)lnx+$\frac{m}{2}{x^2}$-x,m∈R且m≠0.
(Ⅰ)當(dāng)m=2時(shí),令g(x)=f(x)+log2(3k-1),k為常數(shù),求函數(shù)y=g(x)的零點(diǎn)的個(gè)數(shù);
(Ⅱ)若不等式f(x)>1-$\frac{1}{m}$在x∈[1,+∞)上恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.判斷下列復(fù)合命題的真假.
(1)等腰三角形頂角的平分線平分底邊并且垂直于底邊;
(2)不等式x2-2x+1>0的解集為R且不等式x2-2x+2≤1的解集為∅.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.計(jì)算:$\underset{lim}{x→0}(1+2x)^{\frac{1}{x}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.在△ABC中,D,E分別為線段AB,AC上的點(diǎn),且$AD=\frac{1}{2}AB$,$AE=\frac{2}{3}AC$,若BE⊥CD,則sinA的最大值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知數(shù)列{an}的通項(xiàng)公式是an=$\left\{\begin{array}{l}{2^{-n}}\;\;\;\;\;\;(n是奇數(shù))\\ \frac{1}{{2n+{n^2}}}\;\;(n是偶數(shù))\end{array}$,則它的前4項(xiàng)和為$\frac{19}{24}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知一個(gè)平放的正三棱錐型容器的各棱長(zhǎng)為6,其內(nèi)有一小球O(不計(jì)重量),現(xiàn)從正三棱錐型容器的頂端向內(nèi)注水,球慢慢上浮,若注入的水的體積是正三棱錐體積的$\frac{7}{8}$時(shí),球與正三棱錐各側(cè)面均相切(與水面也相切),則球的表面積等于(  )
A.πB.$\frac{3}{2}$πC.$\frac{4}{3}$πD.$\frac{7}{6}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知$tanα=\frac{1}{2},sin(α+β)=-\frac{{\sqrt{2}}}{10}$,其中α,β∈(0,π).
(1)求cosβ的值;
(2)求α-β的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案