9.已知F1,F(xiàn)2分別是橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn),橢圓C上存在點(diǎn)P使∠F1PF2為鈍角,則橢圓C的離心率的取值范圍是( 。
A.($\frac{\sqrt{2}}{2}$,1)B.($\frac{1}{2}$,1)C.(0,$\frac{\sqrt{2}}{2}$)D.(0,$\frac{1}{2}$)

分析 由∠F1PF2為鈍角,得到$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$<0有解,轉(zhuǎn)化為c2>x02+y02有解,求出x02+y02的最小值后求得橢圓離心率的取值范圍.

解答 解:設(shè)P(x0,y0),則|x0|<a,
又F1(-c,0),F(xiàn)2(c,0),
又∠F1PF2為鈍角,當(dāng)且僅當(dāng)$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$<0有解,
即(-c-x0,-y0)•(c-x0,-y0)=(-c-x0)(c-x0)+y02<0,
即有c2>x02+y02有解,即c2>(x02+y02min
又y02=b2-$\frac{^{2}}{{a}^{2}}$x02
∴x02+y02=b2+$\frac{{c}^{2}}{{a}^{2}}$x02∈[b2,a2),
即(x02+y02min=b2
故c2>b2,c2>a2-c2,
∴$\frac{{c}^{2}}{{a}^{2}}$>$\frac{1}{2}$,即e>$\frac{\sqrt{2}}{2}$,
又0<e<1,
∴$\frac{\sqrt{2}}{2}$<e<1.
故選:A.

點(diǎn)評 本題考查了橢圓的性質(zhì),主要是求離心率的范圍,考查了平面向量數(shù)量積在解題中的應(yīng)用,體現(xiàn)了數(shù)學(xué)轉(zhuǎn)化思想方法,解答此題的關(guān)鍵在于把存在一點(diǎn)P使∠F1PF2為鈍角轉(zhuǎn)化為$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$<0有解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.函數(shù)$y=\sqrt{{{log}_{\frac{1}{3}}}x}$的定義域是(0,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知α是銳角,且cos(α+$\frac{π}{6}$)=$\frac{1}{3}$,則cos(α-$\frac{π}{3}$)=$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.(3-x)n的展開式中各項(xiàng)系數(shù)和為64,則x3的系數(shù)為-540(用數(shù)字填寫答案)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知定義域?yàn)镽的函數(shù)f(x)滿足下列性質(zhì):f(x+1)=f(-x-1),f(2-x)=-f(x) 則f(3)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若“?x0∈R,x02+2x0+m≤0”是真命題,則實(shí)數(shù)m的最大值是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若x,y滿足約束條件$\left\{\begin{array}{l}{x≥1}\\{x-y≤3}\\{y≤-3(x-3)}\end{array}\right.$,則z=2x+y的最大值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=ln(1+x)-ax,$g(x)=\frac{x}{1+x}-bln(1+x)$.
(Ⅰ)當(dāng)b=1時,求g(x)的最大值;
(Ⅱ)若對?x∈[0,+∞),f(x)≤0恒成立,求a的取值范圍;
(Ⅲ)證明$\sum_{i=1}^n{\frac{i}{{{i^2}+1}}-lnn}≤\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知x,y的取值如表:
x0134
ya4.34.86.7
若x,y具有線性相關(guān)關(guān)系,且回歸方程為$\hat y=0.95x+2.6$,則a=2.2.

查看答案和解析>>

同步練習(xí)冊答案