.已知函數(shù)
(Ⅰ)若,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)上單調(diào)遞增,求實(shí)數(shù)的取值范圍
(Ⅲ)記函數(shù),若的最小值是,求函數(shù)的解析式
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)的圖象過點(diǎn)(0,3),且在上為增函數(shù),在上為減函數(shù).
(1)求的解析式;
(2)求在R上的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,一個(gè)“凸輪”放置于直角坐標(biāo)系X軸上方,其“底端”落在原點(diǎn)O處,一頂點(diǎn)及
中心M在Y軸正半軸上,它的外圍由以正三角形的頂點(diǎn)為圓心,以正三角形的邊長(zhǎng)為半徑的三段等弧組成.

今使“凸輪”沿X軸正向滾動(dòng)前進(jìn),在滾動(dòng)過程中“凸輪”每時(shí)每刻都有一個(gè)“最高點(diǎn)”,其中心也在不斷移動(dòng)位置,則在“凸輪”滾動(dòng)一周的過程中,將其“最高點(diǎn)”和“中心點(diǎn)”所形成的圖形按上、下放置,應(yīng)大致為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)在點(diǎn)A(1,f(1))處的切線平行于x軸.
(Ⅰ)當(dāng)時(shí),討論函數(shù)的單調(diào)性;
(Ⅱ)證明:當(dāng)a=-3時(shí),對(duì)任意,都有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)、
已知函數(shù)
(Ⅰ)求證:存在定點(diǎn),使得函數(shù)圖象上任意一點(diǎn)關(guān)于點(diǎn)對(duì)稱的點(diǎn)也在函數(shù)的圖象上,并求出點(diǎn)的坐標(biāo);
(Ⅱ)定義,其中,求;
(Ⅲ)對(duì)于(Ⅱ)中的,求證:對(duì)于任意都有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

((本小題滿分12分)
若函數(shù)是奇函數(shù),且
(1)求函數(shù)的解析式;
(2)求函數(shù)上的最大值;
(3)設(shè)函數(shù),若不等式上恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)在點(diǎn)處的切線與直線垂直,則實(shí)數(shù)的值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過曲線上一點(diǎn)P的切線與直線平行,則切點(diǎn)的坐標(biāo)為     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)當(dāng)a=0時(shí),求與直線x-y-10 =0平行,且與曲線y=f(x)相切的直線的方程;
(2)求函數(shù)的單調(diào)遞減區(qū)間;
(3)如果存在,使函數(shù)在x=-3處取得最大值,試求b的最大值。

查看答案和解析>>

同步練習(xí)冊(cè)答案