分析 (1)作PM∥BE交AB于M,連結(jié)QM,則QM∥AD,證明平面PQM∥平面ADF,即可證明PQ∥平面ADF;
(2)若PQ∥DF,則DQ與FP必交于一點(diǎn)且此點(diǎn)必在AB上.故:只要P,Q分別為AE,DB的中點(diǎn)即可.
解答 (1)證明:作PM∥BE交AB于M,連結(jié)QM,則QM∥AD,
∵QM?平面ADF,AD?平面ADF,
∴QM∥平面ADF,
同理PM∥平面ADF,
∵PM∩QM=M,
∴平面PQM∥平面ADF,
∴PQ∥平面ADF;
(2)解:若PQ∥DF,則DQ與FP必交于一點(diǎn)且此點(diǎn)必在AB上.
故只要P,Q分別為AE,DB的中點(diǎn)即可.
點(diǎn)評(píng) 本題考查線面平行、平面與平面平行的判定,考查學(xué)生分析解決問題的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x2+x-3=0 | B. | ex-x-1=0 | C. | x-3+ln(x+1)=0 | D. | x2-lgx=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 60° | B. | 120° | C. | 45° | D. | 135° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a>b>c | B. | c>a>b | C. | b>c>a | D. | a<b<c |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com