6.已知球的直徑SC=4,AB是該球球面上兩點(diǎn),AB=2,∠ASC=∠BSC=30°,則棱錐S-ABC的體積為$\sqrt{3}$.

分析 設(shè)球心為點(diǎn)O,作AB中點(diǎn)D,連接OD,CD,說(shuō)明SC是球的直徑,利用余弦定理,三角形的面積公式求出S△SCD,和棱錐的高AB,即可求出棱錐的體積.

解答 解:設(shè)球心為點(diǎn)O,作AB中點(diǎn)D,連接OD,CD 因?yàn)榫段SC是球的直徑,
所以它也是大圓的直徑,則易得:∠SAC=∠SBC=90°
所以在Rt△SAC中,SC=4,∠ASC=30° 得:AC=2,SA=2$\sqrt{3}$
又在Rt△SBC中,SC=4,∠BSC=30° 得:BC=2,SB=2$\sqrt{3}$,
則SA=SB,AC=BC,
因?yàn)辄c(diǎn)D是AB的中點(diǎn)所以在等腰三角形ASB中,SD⊥AB且SD=$\sqrt{S{A}^{2}-A{D}^{2}}$=$\sqrt{12-\frac{3}{4}}$=$\frac{3\sqrt{5}}{2}$,
在等腰三角形CAB中,CD⊥AB且CD=$\sqrt{A{C}^{2}-A{D}^{2}}$=$\sqrt{4-\frac{3}{4}}$=$\frac{\sqrt{13}}{2}$,
又SD交CD于點(diǎn)D 所以:AB⊥平面SCD,
即:棱錐S-ABC的體積:V=$\frac{1}{3}$AB•S△SCD,
因?yàn)椋篠D=$\frac{3\sqrt{5}}{2}$,CD=$\frac{\sqrt{13}}{2}$,SC=4,
所以由余弦定理得:cos∠SDC=(SD2+CD2-SC2)$•\frac{1}{2SD•CD}$=($\frac{45}{4}+\frac{13}{4}$-16)×$\frac{1}{2×\frac{3\sqrt{5}}{2}×\frac{\sqrt{13}}{2}}$=-$\frac{1}{\sqrt{65}}$,
則:sin∠SDC=$\sqrt{1-\frac{1}{65}}$=$\frac{8}{\sqrt{65}}$,
由三角形面積公式得△SCD的面積S=$\frac{1}{2}$SD•CD•sin∠SDC=$\frac{1}{2}$×$\frac{3\sqrt{5}}{2}×\frac{\sqrt{13}}{2}×\frac{8}{\sqrt{65}}$=3
所以:棱錐S-ABC的體積:V=$\frac{1}{3}$AB•S△SCD=$\frac{1}{3}$$\sqrt{3}×3$=$\sqrt{3}$.
故答案為:$\sqrt{3}$.

點(diǎn)評(píng) 本題是中檔題,考查球的內(nèi)接棱錐的體積的求法,考查空間想象能力,計(jì)算能力,有難度的題目,?碱}型.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.拋物線x2=-4y的準(zhǔn)線方程為y=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.在等差數(shù)列{an}中,a1=2,公差為d,則“d=2”是“a1,a2,a4成等比數(shù)列”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知2a=5b=m且$\frac{1}{a}+\frac{1}$=2,則m的值是( 。
A.100B.10C.$\sqrt{10}$D.$\frac{1}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知{an}是等比數(shù)列,a2=2,a4=8,則a6=( 。
A.4B.16C.32D.64

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.一底面半徑為r,母線長(zhǎng)為3r的圓錐內(nèi)有一內(nèi)接正方體,則該正方體的表面積為$\frac{16{r}^{2}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知$\frac{π}{4}<α<\frac{3π}{4}$,$sin(α-\frac{π}{4})=\frac{4}{5}$,則cosα=( 。
A.$\frac{{\sqrt{2}}}{10}$B.$-\frac{{\sqrt{2}}}{10}$C.$\frac{{7\sqrt{2}}}{10}$D.$-\frac{{\sqrt{2}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知一個(gè)袋中裝有大小相同的4個(gè)紅球,3個(gè)白球,3個(gè)黃球.若任意取出2個(gè)球,則取出的2個(gè)球顏色相同的概率是$\frac{4}{15}$;若有放回地任意取10次,每次取出一個(gè)球,則取到紅球個(gè)數(shù)X的方差為2.4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.向量$\overrightarrow{a}$=(2,-1,3),$\overrightarrow$=(-4,2,x),若$\overrightarrow{a}$⊥$\overrightarrow$,則x=$\frac{10}{3}$;若$\overrightarrow{a}$與$\overrightarrow$夾角是銳角,則x 的取值范圍$(\frac{10}{3},+∞)$.

查看答案和解析>>

同步練習(xí)冊(cè)答案