7.已知命題p:“方程$\frac{{x}^{2}}{9-k}$+$\frac{{y}^{2}}{k-1}$=1表示焦點在x軸上的橢圓”,命題q:“方程$\frac{{x}^{2}}{2-k}$+$\frac{{y}^{2}}{k}$=1表示雙曲線”.
若“p或q”是真命題,“p且q”是假命題,求實數(shù)k的取值范圍.

分析 命題p真:可得$\left\{\begin{array}{l}{9-k>k-1}\\{k-1>0}\end{array}\right.$,解得k范圍.命題q真:可得(2-k)k<0,解得k.若“p或q”是真命題,“p且q”是假命題,可得p,q必然一真一假.

解答 解:命題p:“方程$\frac{{x}^{2}}{9-k}$+$\frac{{y}^{2}}{k-1}$=1表示焦點在x軸上的橢圓”,則$\left\{\begin{array}{l}{9-k>k-1}\\{k-1>0}\end{array}\right.$,解得5>k>1.
命題q:“方程$\frac{{x}^{2}}{2-k}$+$\frac{{y}^{2}}{k}$=1表示雙曲線”,(2-k)k<0,解得k>2或k<0.
若“p或q”是真命題,“p且q”是假命題,可得p,q必然一真一假.
∴$\left\{\begin{array}{l}{1<k<5}\\{0≤k≤2}\end{array}\right.$,或$\left\{\begin{array}{l}{k≥5或k≤1}\\{k>2或k<0}\end{array}\right.$,
解得:1<k≤2或k≥5或k<0.
實數(shù)k的取值范圍是1<k≤2或k≥5或k<0.

點評 本題考查了函數(shù)的性質(zhì)、復(fù)合命題真假的判定方法、不等式的解法,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在△ABC中,b=2,a=4,C=45°,則△ABC的面積S=( 。
A.$2\sqrt{3}$B.2C.4D.$2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知F1,F(xiàn)2分別為雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點,過F1的直線l與雙曲線C的左、右兩支分別交于A,B兩點,若|AB|:|BF2|:|AF2|=5:12:13,則雙曲線的離心率為(  )
A.$\sqrt{13}$B.$\sqrt{41}$C.$\sqrt{15}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若命題“?x0∈R,x02-ax0+2<0”為假命題,則實數(shù)a的取值范圍是[-2$\sqrt{2}$,2$\sqrt{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)和g(x)的圖象關(guān)于原點對稱,且f(x)=x2+2x.
(Ⅰ)求函數(shù)g(x)的解析式;
(Ⅱ)解不等式g(x)≥f(x)-|x-1|;
(Ⅲ)若方程g(x)-λf(x)+1=0在(-1,1)上有且只有一個實根,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.三棱錐P-ABC中,PA=2,BC=3,PA⊥BC,如圖所示,作與PA、BC都平行的截面,分別交棱PB、BC、AC、AB于點E、F、G、H,則截面EFGH的最大面積為( 。
A.3B.6C.$\frac{3}{2}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)y=2cos(ωx+φ)(ω>0,0<φ<π)滿足f(-x)=-f(x),其圖象與直線y=0的某兩個交點的橫坐標(biāo)分別為x1、x2,|x1-x2|的最小值為π,則(  )
A.ω=2,φ=$\frac{π}{4}$B.ω=2,φ=$\frac{π}{2}$C.ω=1,φ=$\frac{π}{2}$D.ω=1,φ=$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.直線l1:ax+y-3=0,l2:x+by-c=0,則ab=1是l1∥l2的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.某班有男生32人,女生24人,用分層抽樣的方法從該班全體學(xué)生中抽取一個容量  為7的樣本,則抽取的男生人數(shù)為( 。
A.6B.4C.3D.2

查看答案和解析>>

同步練習(xí)冊答案