13.設(shè)p:方程x2+mx+1=0有兩個不等的實根,q:方程2x2+2(m-2)x+$\frac{1}{2}$=0無實根,當“p或q為真,p且q為假”時,求m的取值范圍.

分析 當“p或q為真,p且q為假”時,命題p,q一真一假,進而可得滿足條件的m的取值范圍.

解答 解:若方程x2+mx+1=0有兩個不等的實根,
則△=m2-4>0,
解得:m>2,或a<-2,
即命題p:m>2,或a<-2,
若方程2x2+2(m-2)x+$\frac{1}{2}$=0無實根,
則△=4(m-2)2-4<0,
解得:1<m<3,
當“p或q為真,p且q為假”時,
命題p,q一真一假,
當p真q假時,m<-2,或m≥3,
當p假q真時,1<m≤2,
綜上可得:m<-2,或1<m≤2,或m≥3,

點評 本題以命題的真假判斷與應用為載體,考查了復合命題,方程根的存在性和個數(shù)判斷,等知識點,難度中檔.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

3.數(shù)列{an}滿足a1=1,$\sqrt{\frac{1}{{{a_n}^2}}+2}$=$\frac{1}{{{a_{n+1}}}}$,數(shù)列{an2}的前n項和記為Sn,若有S2n+1-Sn≤$\frac{t}{20}$對任意的n∈N*恒成立,則正整數(shù)t的最小值為17.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.在△ABC中,若3sinC=2sinB,點E,F(xiàn)分別是AC,AB的中點,則$\frac{BE}{CF}$的取值范圍為$(\frac{1}{4},\frac{7}{8})$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.不等式組$\left\{\begin{array}{l}{2x+y-3≤0}\\{3x-y+3≥0}\\{x-2y+1≤0}\end{array}\right.$的解集記為D,有下面四個命題:
p1:?(x,y)∈D,2x+3y≥-1;   
p2:?(x,y)∈D,2x-5y≥-3;
p3:?(x,y)∈D,$\frac{y-1}{2-x}$≤$\frac{1}{3}$;      
p4:?(x,y)∈D,x2+y2+2y≤1.
其中的真命題是( 。
A.p1,p2B.p2,p3C.p2,p4D.p3,p4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知點P位橢圓C:$\frac{x^2}{4}+\frac{y^2}{9}=1$上任意一點,則P到直線l:2x-y=12的距離的最小值為( 。
A.$\frac{7}{5}$B.$\frac{7}{5}\sqrt{5}$C.$\frac{17}{5}$D.$\frac{17}{5}\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.求證:
(1)tanA-$\frac{1}{tanA}$=-$\frac{2}{tan2A}$;
(2)sinθ(1+cos2θ)=sin2θcosθ;
(3)sin2$\frac{α}{4}$=$\frac{1-cos\frac{α}{2}}{2}$;
(4)1+sinα=2cos2($\frac{π}{4}$-$\frac{α}{2}$);
(5)1-sinα=2cos2($\frac{π}{4}$+$\frac{α}{2}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.一平面截球O得到半徑為$\sqrt{5}$cm的圓面,球心到這個平面的距離是2cm,則球的半徑為3cm.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.拋物線y2=2x的焦點到準線的距離為( 。
A.$\frac{1}{2}$B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.如圖,ABCD-A1B1C1D1是正方體,O、M、N分別是B1D1、AB1、AD1的中點,直線A1C交平面AB1D1于點P.
(Ⅰ)證明:MN∥平面CB1D1
(Ⅱ)證明:①A、P、O、C四點共面;②A、P、O三點共線.

查看答案和解析>>

同步練習冊答案