在100件產(chǎn)品中有3件次品,從中任取2件進(jìn)行檢驗(yàn),至少有1件次品的不同取法有
 
種.
考點(diǎn):排列、組合及簡單計(jì)數(shù)問題
專題:排列組合
分析:在100件產(chǎn)品中有3件次品,現(xiàn)從中任取2件產(chǎn)品,至少有1件次品的對立事件是沒有次品,沒有次品的事件有C972,得到至少有1件次品的不同取法用所有減去不合題意的.
解答: 解:在100件產(chǎn)品中有3件次品,現(xiàn)從中任取2件產(chǎn)品,共有C1002種結(jié)果,
至少有1件次品的對立事件是沒有次品,沒有次品的事件有C972
∴至少有1件次品的不同取法有C1002-C972,
故答案為:C1002-C972
點(diǎn)評:本題考查分步計(jì)數(shù)原理,是一個基礎(chǔ)題,解題時可以從正面來考慮,至少有一件次品包括有一件次品,有兩件次品,有三件次品,分別寫出結(jié)果再相加
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合M={x|x2-mx+6=0,x∈R}且M∪{2,3}={2,3},則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等比數(shù)列{an}共有2n項(xiàng),它的全部各項(xiàng)和是奇數(shù)項(xiàng)和的3倍,則公比q=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平行四邊形ABCD中,E為CD的中點(diǎn),
AP
=x
AB
,
AQ
=y
AD
,其中x,y∈R,且均不為0,若
PQ
BE
,則
x
y
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式x2-2x-3<0的解集為A,不等式|x+1|<3的解集為B,不等式x2+ax+b<0的解集為A∩B,那么a+b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列數(shù)列{an}的通項(xiàng)公式:
(1)a1=
1
2
,an+1(1+an)=an
(2)a1=1,(n+1)
a
2
n+1
-n
a
2
n
+an+1an=0;
(3)a1=1,(an,an+1)在直線y=2x+1上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD中,M,N分別為AC,PC上的點(diǎn),且MN∥平面PAD,則( 。
A、MN∥PD
B、MN∥PA
C、MN∥AD
D、以上均有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù),g(x)=lnx+ax2+bx,函數(shù)g(x)的圖象在點(diǎn)(1,g(1))處的切線平行于x軸.
(Ⅰ)確定a與b的關(guān)系;
(Ⅱ)試討論函數(shù)g(x)的單調(diào)性;
(Ⅲ)證明:對任意n∈N*,都有l(wèi)n(1+n)>
1
22
+
1
32
+
1
42
…+
n-1
n2
成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程mx2+(2m+3)x+1-m=0有一個正根和一個負(fù)根的充要條件是
 

查看答案和解析>>

同步練習(xí)冊答案