已知函數(shù)f(x)=-
4+
1
x2
,數(shù)列{an},點(diǎn)Pn(an,-
1
an+1
)在曲線y=f(x)上(n∈N+),且a1=1,an>0.
( I)求數(shù)列{an}的通項(xiàng)公式;
( II)數(shù)列{bn}的前n項(xiàng)和為T(mén)n且滿足bn=an2an+12,求Tn
分析:(1)由已知可得,
1
an+1
=
4+
1
a
2
n
 即
1
a
2
n+1
-
1
a
2
n
=4
從而可得數(shù)列{
1
a
2
n
}是等差數(shù)列,首項(xiàng)
1
a
2
1
=1
,公差d=4的等差數(shù)列,從而可求
1
a
2
n
=1+4(n-1)
  結(jié)合an>0可求an
(2)由已知可得,bn=
1
4n-3
1
4n+1
=
1
4
(
1
4n-3
-
1
4n+1
),從而利用裂項(xiàng)可求和
解答:解:(1)-
1
an+1
=f(an)=-
4+
1
a
2
n
且an>0
1
an+1
=
4+
1
a
2
n
1
a
2
n+1
-
1
a
2
n
=4

∴數(shù)列{
1
a
2
n
}是等差數(shù)列,首項(xiàng)
1
a
2
1
=1
,公差d=4
1
a
2
n
=1+4(n-1)
a
2
n
=
1
4n-3

∵an>0∴an=
1
4n-3

(2)bn=
1
4n-3
1
4n+1
=
1
4
(
1
4n-3
-
1
4n+1

Tn=
1
4
(1-
1
5
+
1
5
-
1
9
+…+
1
4n-3
-
1
4n+1
)
=
1
4
(1-
1
4n+1
)
=
n
4n+1
點(diǎn)評(píng):本題主要考查了利用數(shù)列的遞推公式求解數(shù)列的通項(xiàng)公式,解(1)題的關(guān)鍵是構(gòu)造等差的形式,裂項(xiàng)求和是數(shù)列求和中的重要方法,要注意掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函數(shù)f(x)的最小正周期;
(2)若函數(shù)y=f(2x+
π
4
)
的圖象關(guān)于直線x=
π
6
對(duì)稱(chēng),求φ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)為定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,時(shí)f(x)的表達(dá)式;
(2)若關(guān)于x的方程f(x)-a=o有解,求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=aInx-ax,(a∈R)
(1)求f(x)的單調(diào)遞增區(qū)間;(文科可參考公式:(Inx)=
1
x

(2)若f′(2)=1,記函數(shù)g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在區(qū)間(1,3)上總不單調(diào),求實(shí)數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點(diǎn)A(1,f(1))處的切線l與直線3x-y+2=0平行,若數(shù)列{
1
f(n)
}
的前n項(xiàng)和為Sn,則S2010的值為(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是定義在區(qū)間(-1,1)上的奇函數(shù),且對(duì)于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案