【題目】正三棱柱(底面是正三角形,側(cè)棱垂直底面)的各條棱長均相等,為的中點.、分別是、上的動點(含端點),且滿足.當運動時,下列結論中正確的是______ (填上所有正確命題的序號).
①平面平面;
②三棱錐的體積為定值;
③可能為直角三角形;
④平面與平面所成的銳二面角范圍為.
【答案】①②④
【解析】
由,得到線段一定過正方形的中心,由平面,可得平面平面;
由的面積不變,到平面的距離不變,可得三棱錐的體積為定值;
利用反證法思想說明不可能為直角三角形;
平面與平面平行時所成角為0,當與重合,與重合,平面與平面所成的銳二面角最大.
如圖:
當、分別是、上的動點(含端點),且滿足,則線段一定過正方形的中心,而平面,平面,可得平面平面,故①正確;
當、分別是、上的動點(含端點),過點作邊上的高的長等于的長,所以的面積不變,由于平面,故點到平面的距離等于點到平面的距離,則點到平面的距離為定值,故三棱錐的體積為定值;所以②正確;
由可得: ,若為直角三角形,則一定是以為直角的直角三角形,但的最大值為,而此時,的長都大于,故不可能為直角三角形,所以③不正確;
當、分別是、的中點,平面與平面平行,所成角為0;
當與重合,與重合,平面與平面所成銳二面角最大;
延長角于,連接,則平面平面,由于為的中點,,所以,且,故在中,為中點,為中點,
在中,為中點,為中點,故,由于平面,所以平面,則,, 所以平面與平面所成銳二面角最大為,故④正確;
故答案為①②④
科目:高中數(shù)學 來源: 題型:
【題目】有一個容量為66的樣本,數(shù)據(jù)的分組及各組的頻數(shù)如下:
[10.5,14.5) 2 [14.5,18.5) 4 [18.5,22.5) 9 [22.5,26.5) 18
[26.5,30.5) 11 [30.5,34.5) 12 [34.5,38.5) 8 [38.5,42.5) 2
根據(jù)樣本的頻率分布估計,數(shù)據(jù)落在[30.5,42.5)內(nèi)的概率約是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)有甲、乙兩套設備生產(chǎn)同一種產(chǎn)品,為了檢測兩套設備的生產(chǎn)質(zhì)量情況,隨機從兩套設備生產(chǎn)的大量產(chǎn)品中各隨機抽取了100件產(chǎn)品作為樣本來檢測一項質(zhì)量指標值,若產(chǎn)品的該項質(zhì)量指標值落在內(nèi),則為合格品,否則為不合格品.表1是甲套設備的樣本的頻數(shù)分布表,圖是乙套設備的樣本的頻率分布直方圖.
表甲套設備的樣本的頻數(shù)分布表
質(zhì)量指標值 | ||||||
頻數(shù) | 2 | 10 | 36 | 38 | 12 | 2 |
(1)將頻率視為概率.若乙套設備生產(chǎn)了10000件產(chǎn)品,則其中的合格品約有多少件?
(2)填寫下面的2×2列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.01的前提下,認為該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標值與甲、乙兩套設備的選擇有關.
甲套設備 | 乙套設備 | 合計 | |
合格品 | |||
不合格品 | |||
合計 |
附表及公式:,其中;
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】手機廠商推出一款6寸大屏手機,現(xiàn)對500名該手機使用者(200名女性,300名男性)進行調(diào)查,對手機進行評分,評分的頻數(shù)分布表如下:
女性用戶 | 分值區(qū)間 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
頻數(shù) | 20 | 40 | 80 | 50 | 10 | |
男性用戶 | 分值區(qū)間 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
頻數(shù) | 45 | 75 | 90 | 60 | 30 |
(1)完成下列頻率分布直方圖,并比較女性用戶和男性用戶評分的波動大。ú挥嬎憔唧w值,給出結論即可);
(2)把評分不低于70分的用戶稱為“評分良好用戶”,能否有的把握認為“評分良好用戶”與性別有關?
參考附表:
參考公式,其中
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的離心率為,且經(jīng)過點.
(1)求橢圓的方程;
(2)直線與橢圓相交于,兩點,若,求(為坐標原點)面積的最大值及此時直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直三棱柱ABC-A1B1C1中,D,E分別為BC,AC的中點,AB=BC.
求證:(1)A1B1∥平面DEC1;
(2)BE⊥C1E.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣2|x|.
(1)將函數(shù)f(x)寫成分段函數(shù);
(2)判斷函數(shù)的奇偶性,并畫出函數(shù)圖象.
(3)若函數(shù)在[a, +∞)上單調(diào),求a的范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x|x-a|+bx(a,b∈R).
(Ⅰ)當b=-1時,函數(shù)f(x)恰有兩個不同的零點,求實數(shù)a的值;
(Ⅱ)當b=1時,
①若對于任意x∈[1,3],恒有f(x)≤2x2,求a的取值范圍;
②若a≥2,求函數(shù)f(x)在區(qū)間[0,2]上的最大值g(a).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com