【題目】已知函數(shù)f(x)=ax3+bx2的圖象經(jīng)過點(diǎn)M(1,4),且在x=﹣2取得極值.
( I)求實(shí)數(shù)a,b的值;
( II)若函數(shù)f(x)在區(qū)間(m,m+1)上不單調(diào),求m的取值范圍.

【答案】解:(Ⅰ)∵f(x)=ax3+bx2的圖象經(jīng)過點(diǎn)M(1,4),∴a+b①

又f′(x)=3ax2+2bx,

則f′(﹣2)=0,即﹣6a+2b=0②

由①②解得a=1,b=3;

(Ⅱ)由(Ⅰ)得:f(x)=x3+3x2,f′(x)=3x2+6x

令f′(x)=3x2+6x=0,得:x=﹣2或x=0

當(dāng)x∈(﹣∞,﹣2)或(0,+∞)時(shí),f′(x)>0,f(x)是增函數(shù),

當(dāng)x∈(﹣2,0)時(shí),f′(x)<0,f(x)是減函數(shù).

∵函數(shù)f(x)在區(qū)間(m,m+1)上不單調(diào),

∴m<﹣2<m+1或m<0<m+1或m<﹣2<0<m+1

解得:﹣3<m<﹣2或﹣1<m<0


【解析】第一問根據(jù)函數(shù)圖象過點(diǎn)M,得到a,b關(guān)系,再根據(jù)在x=﹣2取得極值,函數(shù)求導(dǎo),導(dǎo)數(shù)等于0,可得a,b;
第二問先應(yīng)用導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系,求出函數(shù)的單調(diào)性,然后根據(jù)函數(shù)f(x)在區(qū)間(m,m+1)不單調(diào),可得函數(shù)在(m,m+1)有增有減,可得。
【考點(diǎn)精析】關(guān)于本題考查的利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的極值與導(dǎo)數(shù),需要了解一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減;求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線C:mx2+ny2=1,(m>0,n<0)的一條漸近線與圓x2+y2﹣6x﹣2y+9=0相切,則雙曲線C的離心率等于(  )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|y= },集合B={x|y=lg(﹣x2﹣7x﹣12)},集合C={x|m+1≤x≤2m﹣1}.
(1)求A∩B;
(2)若A∪C=A,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在正方體ABCD﹣A1B1C1D1中,M、N分別是棱AB、CC1的中點(diǎn),△MB1P的頂點(diǎn)P在棱CC1與棱C1D1上運(yùn)動(dòng),有以下四個(gè)命題:
①平面MB1P⊥ND1;②平面MB1P⊥平面ND1A1;③△MB1P在底面ABCD上的射影圖形的面積為定值;④△MB1P在側(cè)面D1C1CD上的射影圖形是三角形.
其中正確命題的序號是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,a,b,c分別是角A,B,C的對邊,且cos2B+3cos(A+C)+2=0, ,那么△ABC周長的最大值是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)直線 是函數(shù)f(x)=sinx+acosx的圖象的一條對稱軸.
(1)求函數(shù)f(x)的最大值及取得最大值時(shí)x的值;
(2)求函數(shù)f(x)在[0,π]上的減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3﹣x2﹣2a,若存在x0∈(﹣∞,a],使f(x0)≥0,則實(shí)數(shù)a的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=e|x| , 將函數(shù)f(x)的圖象向右平移3個(gè)單位后,再向上平移2個(gè)單位,得到函數(shù)g(x)的圖象,函數(shù)h(x)= 若對于任意的x∈[3,λ](λ>3),都有h(x)≥g(x),則實(shí)數(shù)λ的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于數(shù)列 , ,若滿足 ,則稱數(shù)列 為“ 數(shù)列”.
若存在一個(gè)正整數(shù) ,若數(shù)列 中存在連續(xù)的 項(xiàng)和該數(shù)列中另一個(gè)連續(xù)的 項(xiàng)恰好按次序?qū)?yīng)相等,則稱數(shù)列 是“ 階可重復(fù)數(shù)列”,
例如數(shù)列 因?yàn)? , , , , 按次序?qū)?yīng)相等,所以數(shù)列 是“ 階可重復(fù)數(shù)列”.
(I)分別判斷下列數(shù)列 , , , , , , .是否是“ 階可重復(fù)數(shù)列”?如果是,請寫出重復(fù)的這 項(xiàng);
(II)若項(xiàng)數(shù)為 的數(shù)列 一定是 “ 階可重復(fù)數(shù)列”,則 的最小值是多少?說明理由;
(III)假設(shè)數(shù)列 不是“ 階可重復(fù)數(shù)列”,若在其最后一項(xiàng) 后再添加一項(xiàng) ,均可 使新數(shù)列是“ 階可重復(fù)數(shù)列”,且 ,求數(shù)列 的最后一項(xiàng) 的值.

查看答案和解析>>

同步練習(xí)冊答案