如圖,△ABD和△BCE是在直線AC同側(cè)的兩個等邊三角形,試證明AE=CD.

答案:
解析:

  以B為原點,AC所在直線為x軸建立直角坐標系,設B(0,0)、A(-2a,0)、C(2b,0)、D(-a,a)、E(b,b),則

  |AE|=

  |CD|=,

  所以|AE|=|CD|.


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)A.(選修4-4坐標系與參數(shù)方程)已知點A是曲線ρ=2sinθ上任意一點,則點A到直線ρsin(θ+
π3
)=4
的距離的最小值是
 

B.(選修4-5不等式選講)不等式|x-log2x|<x+|log2x|的解集是
 

C.(選修4-1幾何證明選講)如圖所示,AC和AB分別是圓O的切線,且OC=3,AB=4,延長AO到D點,則△ABD的面積是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,以等腰直角三角形斜邊BC上的高AD為折痕,把△ABD和△ACD折成互相垂直的兩個平面后,某學生得出下列四個結(jié)論:
BD
AC
≠0
;
②∠BAC=60°;
③三棱錐D-ABC是正三棱錐;
④平面ADC的法向量和平面ABC的法向量互相垂直.
其中正確的是( 。
A、①②B、②③C、③④D、①④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在如圖所示的幾何體中,四邊形ABCD是平行四邊形,∠ABD=90°,EB⊥平面ABCD,EF∥AB ,  AB=2 ,  EB=
3
 ,  EF=1 ,BC=
13

且M是BD的中點.
(1)求證:EM∥平面ADF;
(2)求直線DF和平面ABCD所成角的正切值;
(3)求二面角D-AF-B的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示的“雙塔”形立體建筑,已知P-ABD和Q-CBD是兩個高相等的正三棱錐,四點A,B,C,D在同一平面內(nèi),要使塔尖P,Q之間的距離為50m,則底邊AB的長為
50
3
50
3
  m.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

選做題:(請考生在以下三個小題中任選一題作答,如果多做,則按所做的第一題評閱記分)
A.(選修4-4坐標系與參數(shù)方程)已知點A是曲線ρ=2sinθ上任意一點,則點A到直線ρsin(θ+
π
3
)=4
的距離的最小值是
5
2
5
2

B.(選修4-5不等式選講)不等式|2x-1|+|2x-3|≥4的解集是
(-∞,0]∪[2,+∞)
(-∞,0]∪[2,+∞)

C.(選修4-1幾何證明選講)如圖所示,AC和AB分別是圓O的切線,且OC=3,AB=4,延長AO到D點,則△ABD的面積是
48
5
48
5

查看答案和解析>>

同步練習冊答案