【題目】如圖,在三棱柱 中, 底面 ,且 為等邊三角形, , 為 的中點(diǎn).
(1)求證:直線 平面 ;
(2)求證:平面 平面 ;
(3)求三棱錐 的體積.
【答案】
(1)證明:如圖所示
連接 交 于 ,連接
因?yàn)樗倪呅? 是平行四邊形,
所以 為 的中點(diǎn),
又因?yàn)? 為 的中點(diǎn),
所以 為 的中位線,
所以
又 平面 平面 ,
所以 平面 .
(2)證明:因?yàn)? 是等邊三角形, 為 的中點(diǎn),
所以
又因?yàn)? 底面
所以
根所線面垂直的判定定理得 平面
又因?yàn)? 平面
所以平面 平面 ;
(3)解:由(2)知, 中,
【解析】(1)由題意構(gòu)造平面BC1D內(nèi)的直線,再證明直線AB1與這條直線平行。(2)根據(jù)線面垂直的判定定理即可得證。(3)根據(jù)題意利用等體積法即可求出體積。
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解直線與平面垂直的判定的相關(guān)知識(shí),掌握一條直線與一個(gè)平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點(diǎn):a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】銳角△ABC中,角A,B,C的對(duì)邊分別為a,b,c,向量 , ,且 .
(1)求角B的大;
(2)若sinAsinC=sin2B,求a﹣c的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】曲線 與直線y=k(x-2)+4有兩個(gè)交點(diǎn),則實(shí)數(shù)k的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ax+bx+cx , 其中c>a>0,c>b>0,若a,b,c是△ABC的三條邊長(zhǎng),則下列結(jié)論正確的是( ) ①對(duì)任意x∈(﹣∞,1),都有f(x)<0;
②存在x∈R,使ax , bx , cx不能構(gòu)成一個(gè)三角形的三條邊長(zhǎng);
③若△ABC為鈍角三角形,存在x∈(1,2),使f(x)=0.
A.①②
B.②③
C.①③
D.①②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列選項(xiàng)中,說法正確的是( )
A.若a>b>0,則
B.向量 (m∈R)共線的充要條件是m=0
C.命題“?n∈N* , 3n>(n+2)?2n﹣1”的否定是“?n∈N* , 3n≥(n+2)?2n﹣1”
D.已知函數(shù)f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的,則命題“若f(a)?f(b)<0,則f(x)在區(qū)間(a,b)內(nèi)至少有一個(gè)零點(diǎn)”的逆命題為假命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,B1B=B1A=AB=BC,∠B1BC=90°,D為AC的中點(diǎn),AB⊥B1D.
(1)求證:平面ABB1A1⊥平面ABC;
(2)在線段CC1(不含端點(diǎn))上,是否存在點(diǎn)E,使得二面角E﹣B1D﹣B的余弦值為 ?若存在,求出 的值,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:k2﹣8k﹣20≤0,命題q:方程 =1表示焦點(diǎn)在x軸上的雙曲線. (Ⅰ)命題q為真命題,求實(shí)數(shù)k的取值范圍;
(Ⅱ)若命題“p∨q”為真,命題“p∧q”為假,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com