在平面直角坐標系中,的兩個頂點、的坐標分別是(-1,0),(1,0),點是的重心,軸上一點滿足,且.
(1)求的頂點的軌跡的方程;
(2)不過點的直線與軌跡交于不同的兩點、,當時,求與的關系,并證明直線過定點.
(1) (2) ,直線過定點
解析試題分析:(1)設點坐標為,
因為為的重心,故點坐標為.
由點在軸上且知,點的坐標為, ……2分
因為,所以,即.
故的頂點的軌跡的方程是. ……4分
(2)設直線與的兩交點為.
由消去得,
則,
且,. ……8分
因為,所以,
故,
整理得.解得. ……10分
①當時=,直線過點(-1,0)不合題意舍去。
②當時,=,直線過點.
綜上所述,直線過定點. ……12分
考點:本小題主要考查橢圓標準方程的求解,直線與橢圓的位置關系.
點評:求曲線方程時,不要忘記驗證是否有限制條件;解決直線與圓錐曲線的位置關系時,一般離不開直線方程與圓錐曲線方程聯(lián)立方程組,此時不要忘記驗證判別式大于零.
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分13分)已知橢圓:()過點,其左、右焦點分別為,且.
(Ⅰ)求橢圓的方程;
(Ⅱ)若是直線上的兩個動點,且,則以為直徑的圓是否過定點?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分10分)在直角坐標平面內(nèi),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程是,直線的參數(shù)方程是(為參數(shù))。
求極點在直線上的射影點的極坐標;
若、分別為曲線、直線上的動點,求的最小值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在直角坐標系中,點,點為拋物線的焦點,
線段恰被拋物線平分.
(Ⅰ)求的值;
(Ⅱ)過點作直線交拋物線于兩點,設直線、、的斜率分別為、、,問能否成公差不為零的等差數(shù)列?若能,求直線的方程;若不能,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設橢圓C:的左焦點為F,過點F的直線與橢圓C相交于A,B兩點,直線l的傾斜角為60o,.
求橢圓C的離心率;
如果|AB|=,求橢圓C的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓()過點(0,2),離心率.
(Ⅰ)求橢圓的方程;
(Ⅱ)設過定點(2,0)的直線與橢圓相交于兩點,且為銳角(其中為坐標原點),求直線斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分13分)已知函數(shù)(其中且為常數(shù))的圖像經(jīng)過點A、B.是函數(shù)圖像上的點,是正半軸上的點.
(1) 求的解析式;
(2) 設為坐標原點,是一系列正三角形,記它們的邊長是,求數(shù)列的通項公式;
(3) 在(2)的條件下,數(shù)列滿足,記的前項和為,證明:。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題15分)已知點是橢圓E:()上一點,F1、F2分別是橢圓E的左、右焦點,O是坐標原點,PF1⊥x軸.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設A、B是橢圓E上兩個動點,().求證:直線AB的斜率為定值;
(Ⅲ)在(Ⅱ)的條件下,當△PAB面積取得最大值時,求λ的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
已知橢圓C :經(jīng)過點離心率為。
(Ⅰ) 求橢圓C的方程;
(Ⅱ)設直線l與橢圓C相交于A、B兩點,以線段OA、OB為鄰邊作平行四邊形OAPB,其中頂點P在橢圓C上,O為坐標原點。求O到直線l的距離的最小值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com