【題目】某學(xué)校成立了數(shù)學(xué)、英語(yǔ)、音樂3個(gè)課外興趣小組,3個(gè)小組分別有39、32、33個(gè)成員,一些成員參加了不止一個(gè)小組,具體情況如圖所示.
現(xiàn)隨機(jī)選取一個(gè)成員,他屬于至少2個(gè)小組的概率是________,他屬于不超過2個(gè)小組的概率是________.
【答案】
【解析】
根據(jù)圖形求出參加興趣小組的總?cè)藬?shù),求出至少2個(gè)小組(只參數(shù)2個(gè)小組或參加3個(gè)小組)的人數(shù),再求出不超過2個(gè)小組(即不是3個(gè)小組)的人數(shù),然后可得概率.
由圖形可得參加興趣小組的總?cè)藬?shù)是60,參加3個(gè)小組的有8人,只參加2個(gè)小組的有28人,
至少2個(gè)小組”包含“2個(gè)小組”和“3個(gè)小組”兩種情況,故他屬于至少2個(gè)小組的概率為
P=;
“不超過2個(gè)小組”包含“1個(gè)小組”和“2個(gè)小組”,其對(duì)立事件是“3個(gè)小組”.
故他屬于不超過2個(gè)小組的概率是P=1-.
故答案為:;..
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩班舉行數(shù)學(xué)知識(shí)競(jìng)賽,參賽學(xué)生的競(jìng)賽得分統(tǒng)計(jì)結(jié)果如下表:
班級(jí) | 參賽人數(shù) | 平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 |
甲 | 45 | 83 | 86 | 85 | 82 |
乙 | 45 | 83 | 84 | 85 | 133 |
某同學(xué)分析上表后得到如下結(jié)論:
①甲、乙兩班學(xué)生的平均成績(jī)相同;
②乙班優(yōu)秀的人數(shù)少于甲班優(yōu)秀的人數(shù)(競(jìng)賽得分分為優(yōu)秀);
③甲、乙兩班成績(jī)?yōu)?/span>85分的學(xué)生人數(shù)比成績(jī)?yōu)槠渌档膶W(xué)生人數(shù)多;
④乙班成績(jī)波動(dòng)比甲班小.
其中正確結(jié)論有( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是等腰梯形,AD∥BC,AC⊥BD.
(Ⅰ)證明:BD⊥PC;
(Ⅱ)若AD=4,BC=2,直線PD與平面PAC所成的角為30°,求四棱錐P-ABCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在“創(chuàng)文創(chuàng)衛(wèi)”活動(dòng)中,某機(jī)構(gòu)為了解一小區(qū)成年居民“吸煙與性別”是否有關(guān).從該小區(qū)中隨機(jī)抽取200位成年居民,得到下邊列聯(lián)表:已知在全部200人中隨機(jī)抽取1人,抽到不吸煙的概率為0.75.
吸煙 | 不吸煙 | 合計(jì) | |
男 | 40 | ||
女 | 90 | ||
合計(jì) | 200 |
(1)補(bǔ)充上面的列聯(lián)表,并判斷:能否有99.9%的把握認(rèn)為“吸煙與性別”有關(guān);
(2)用分層抽樣的方法從吸煙居民中選5人出來,然后再?gòu)闹谐?/span>2人出來,給小區(qū)居民談?wù)勎鼰煹奈:π,求恰好抽到“一男一女”的概?
參考公式: .
參考數(shù)據(jù):
0.10 | 0.05 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}的前n項(xiàng)和為Sn,若對(duì)任意正整數(shù)n,總存在正整數(shù)m,使得Sn=am,則稱數(shù)列{an}為S數(shù)列.
(1)S數(shù)列的任意一項(xiàng)是否可以寫成其某兩項(xiàng)的差?請(qǐng)說明理由.
(2)①是否存在等差數(shù)列為S數(shù)列,若存在,請(qǐng)舉例說明;若不存在,請(qǐng)說明理由.
②是否存在正項(xiàng)遞增等比數(shù)列為S數(shù)列,若存在,請(qǐng)舉例說明;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若,求曲線在處的切線方程;
(2)若對(duì)任意的,,恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)大學(xué)畢業(yè)后,決定利用所學(xué)專業(yè)進(jìn)行自主創(chuàng)業(yè),經(jīng)過市場(chǎng)調(diào)查,生產(chǎn)一小型電子產(chǎn)品需投入固定成本2萬元,每生產(chǎn)萬件,需另投入流動(dòng)成本萬元,當(dāng)年產(chǎn)量小于萬件時(shí),(萬元);當(dāng)年產(chǎn)量不小于7萬件時(shí),(萬元).已知每件產(chǎn)品售價(jià)為6元,假若該同學(xué)生產(chǎn)的商品當(dāng)年能全部售完.
(1)寫出年利潤(rùn)(萬年)關(guān)于年產(chǎn)量(萬件)的函數(shù)解析式;(注:年利潤(rùn)=年銷售收入-固定成本-流動(dòng)成本)
(2)當(dāng)年產(chǎn)量約為多少萬件時(shí),該同學(xué)的這一產(chǎn)品所獲年利潤(rùn)最大?最大年利潤(rùn)是多少?
(取).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
甲、乙兩個(gè)籃球運(yùn)動(dòng)員互不影響地在同一位置投球,命中率分別為與,且乙投球2次均未命中的概率為.
(Ⅰ)求乙投球的命中率;
(Ⅱ)若甲投球1次,乙投球2次,兩人共命中的次數(shù)記為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分10分)選修4—4,坐標(biāo)系與參數(shù)方程
已知曲線,直線:(為參數(shù)).
(I)寫出曲線的參數(shù)方程,直線的普通方程;
(II)過曲線上任意一點(diǎn)作與夾角為的直線,交于點(diǎn),的最大值與最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com