【題目】已知四棱錐的底面ABCD是直角梯形,AD//BC,,E為CD的中點(diǎn),
(1)證明:平面PBD平面ABCD;
(2)若,PC與平面ABCD所成的角為,試問(wèn)“在側(cè)面PCD內(nèi)是否存在一點(diǎn)N,使得平面PCD?”若存在,求出點(diǎn)N到平面ABCD的距離;若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)見(jiàn)解析;(2)存在N點(diǎn)到平面ABCD的距離為
【解析】
(1)通過(guò)證明,結(jié)合題目所給已知,由此證得平面,進(jìn)而證得平面平面.
(2)存在.通過(guò)(1)的結(jié)論,利用面面垂直的性質(zhì)定理建立空間直角坐標(biāo)系,假設(shè)存在符合題意的點(diǎn),使平面,利用向量線性運(yùn)算設(shè)出點(diǎn)坐標(biāo),結(jié)合求得點(diǎn)坐標(biāo),由此證得存在一點(diǎn),使得平面.利用點(diǎn)到平面距離的向量求法,求得點(diǎn)到平面的距離.
(1)證明:由四邊形ABCD是直角梯形, AB=,BC=2AD=2,AB⊥BC,
可得DC=2,∠BCD=,從而△BCD是等邊三角形,BD=2,BD平分∠ADC.
∵E為CD的中點(diǎn),∴DE=AD=1,∴BD⊥AE,
又∵PB⊥AE,PB∩BD=B,∴AE⊥平面PBD.又∵AE平面ABCD∴平面PBD⊥平面ABCD.
(2) 存在.在平面PBD內(nèi)作PO⊥BD于O,連接OC,又∵平面PBD⊥平面ABCD,平面PBD∩平面ABCD=BD,
∴PO⊥平面ABCD,∴∠PCO為PC與平面ABCD所成的角, 則∠PCO=
∴易得OP=OC=,PB=PD,PO⊥BD,所以O為BD的中點(diǎn),OC⊥BD.
以OB,OC,OP所在的直線分別為x,y,z軸建立空間直角坐標(biāo)系,則B(1,0,0),C(0,,0)D(-1,0,0),P(0,0,)假設(shè)在側(cè)面內(nèi)存在點(diǎn),使得平面成立,
設(shè),易得 由得,滿足題意,所以N點(diǎn)到平面ABCD的距離為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于正三角形,挖去以三邊中點(diǎn)為頂點(diǎn)的小正三角形,得到一個(gè)新的圖形,這樣的過(guò)程稱為一次“鏤空操作“,設(shè)是一個(gè)邊長(zhǎng)為1的正三角形,第一次“鏤空操作”后得到圖1,對(duì)剩下的3個(gè)小正三角形各進(jìn)行一次“鏤空操作”后得到圖2,對(duì)剩下的小三角形重復(fù)進(jìn)行上述操作,設(shè)是第次挖去的小三角形面積之和(如是第1次挖去的中間小三角形面積,是第2次挖去的三個(gè)小三角形面積之和),是前次挖去的所有三角形的面積之和,則( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),離心率等于,該橢圓的一個(gè)長(zhǎng)軸端點(diǎn)恰好是拋物線的焦點(diǎn).
(1)求橢圓的方程;
(2)已知直線與橢圓的兩個(gè)交點(diǎn)記為、,其中點(diǎn)在第一象限,點(diǎn)、是橢圓上位于直線兩側(cè)的動(dòng)點(diǎn).當(dāng)、運(yùn)動(dòng)時(shí),滿足,試問(wèn)直線的斜率是否為定值?若是,求出該定值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求在區(qū)間上的最值;
(2)討論函數(shù)的單調(diào)性;
(3)當(dāng)時(shí),有恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直三棱柱中,,,已知G與E分別為和的中點(diǎn),D和F分別為線段AC和AB上的動(dòng)點(diǎn)(不包括端點(diǎn)),若,則線段DF的長(zhǎng)度的平方取值范圍為( ).
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(為自然對(duì)數(shù)的底數(shù)).
(1)求函數(shù)的極值;
(2)問(wèn):是否存在實(shí)數(shù),使得有兩個(gè)相異零點(diǎn)?若存在,求出的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】二十四節(jié)氣是中國(guó)古代的一種指導(dǎo)農(nóng)事的補(bǔ)充歷法,是我國(guó)勞動(dòng)人民長(zhǎng)期經(jīng)驗(yàn)的積累成果和智慧的結(jié)晶,被譽(yù)為“中國(guó)的第五大發(fā)明”.由于二十四節(jié)氣對(duì)古時(shí)候農(nóng)事的進(jìn)行起著非常重要的指導(dǎo)作用,所以勞動(dòng)人民編寫了很多記憶節(jié)氣的歌謠:春雨驚春清谷天,夏滿芒夏暑相連,秋處露秋寒霜降,冬雪雪冬小大寒.《易經(jīng)》里對(duì)二十四節(jié)氣的晷影長(zhǎng)的記錄中,冬至和夏至的晷影長(zhǎng)是實(shí)測(cè)得到的,其他節(jié)氣的晷影是按照等差數(shù)列的規(guī)律計(jì)算出來(lái)的,在下表中,冬至的晷影最長(zhǎng)為130.0寸,夏至的晷影最短為14.8寸,那么《易經(jīng)》中所記錄的清明的晷影長(zhǎng)應(yīng)為( )
A.77.2寸B.72.4寸C.67.3寸D.62.8寸
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).(其中為自然對(duì)數(shù)的底數(shù))
(1)若,且在上是增函數(shù),求的最小值;
(2)設(shè),若對(duì)任意、恒有,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如下圖所示,某窯洞窗口形狀上部是圓弧,下部是一個(gè)矩形,圓弧所在圓的圓心為O,經(jīng)測(cè)量米,米,,現(xiàn)根據(jù)需要把此窯洞窗口形狀改造為矩形,其中E,F在邊上,G,H在圓弧上.設(shè),矩形的面積為S.
(1)求矩形的面積S關(guān)于變量的函數(shù)關(guān)系式;
(2)求為何值時(shí),矩形的面積S最大?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com