若x∈(0,)時(shí)總有l(wèi)oga2-1(1-2x)>0,則實(shí)數(shù)a的取值范圍是( )
A.|a|<1
B.|a|<
C.|a|>
D.1<|a|<
【答案】分析:先把0變成1的對(duì)數(shù),1變成底數(shù)的對(duì)數(shù),再討論底數(shù)與1的關(guān)系,確定函數(shù)的單調(diào)性,根據(jù)函數(shù)的單調(diào)性整理出關(guān)于a的不等式,得到結(jié)果,把兩種情況求并集得到結(jié)果.
解答:解:∵loga2-1(1-2x)>0
∴l(xiāng)oga2-1(1-2x)>loga2-11,
當(dāng)a2-1>1時(shí),函數(shù)是一個(gè)增函數(shù),不等式的解是1-2x>1,?x<0,不符合題意;
當(dāng)0<a2-1<1時(shí),函數(shù)是一個(gè)減函數(shù),根據(jù)函數(shù)的單調(diào)性有0<1-2x<1,?x∈(0,
故0<a2-1<1,解得1<|a|<
故選D.
點(diǎn)評(píng):本題主要考查對(duì)數(shù)函數(shù)單調(diào)性的應(yīng)用、不等式的解法等基礎(chǔ)知識(shí),本題解題的關(guān)鍵是對(duì)于底數(shù)與1的關(guān)系,這里應(yīng)用分類討論思想來(lái)解題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+|x-a|+1(x∈R)為偶函數(shù)
(1)求a的值
(2)若x∈(0,+∞)時(shí)總有f(x)-(1-m)x2>0成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=x2+|x-a|+1(x∈R)為偶函數(shù)
(1)求a的值
(2)若x∈(0,+∞)時(shí)總有f(x)-(1-m)x2>0成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=x2+|x-a|+1(x∈R)為偶函數(shù)
(1)求a的值
(2)若x∈(0,+∞)時(shí)總有f(x)-(1-m)x2>0成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年江蘇省宿遷市泗陽(yáng)中學(xué)高一(下)月考數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)f(x)=x2+|x-a|+1(x∈R)為偶函數(shù)
(1)求a的值
(2)若x∈(0,+∞)時(shí)總有f(x)-(1-m)x2>0成立,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案