【題目】如圖是在豎直平面內(nèi)的一個“通道游戲”.圖中豎直線段和斜線段都表示通道,并且在交點處相遇,若豎直線段有第一條的為第一層,有二條的為第二層,…,依此類推.現(xiàn)有一顆小彈子從第一層的通道里向下運動.若在通道的分叉處,小彈子以相同的概率落入每個通道,記小彈子落入第n層第m個豎直通道(從左至右)的概率為P(n,m).某研究性學習小組經(jīng)探究發(fā)現(xiàn)小彈子落入第n層的第m個通道的次數(shù)服從二項分布,請你解決下列問題.
(1)求P(2,1),P(3,2)及P(4,2)的值,并猜想P(n,m)的表達式.(不必證明)
(2)設(shè)小彈子落入第6層第m個豎直通道得到分數(shù)為ξ,其中ξ= ,試求ξ的分布列及數(shù)學期望.
【答案】
(1)解:根據(jù)已知小球每次遇到正方形障礙物上頂點時,向左、右兩邊下落的概率都是 ,小球遇到第n行第m個障礙物(從左至右)上頂點的概率為P(n,m),可得
P(2,1)= ,P(3,2)= = ,P(4,2)= =
猜想P(n,m)= ;
(2)解:ξ的可能取值為3,2,1,
P(ξ=3)=P(6,1)+P(6,6)= ,
P(ξ=2)=P(6,2)+P(6,5)= = ,
P(ξ=1)=P(6,3)+P(6,4)=
分布列為:
ξ | 3 | 2 | 1 |
P |
Eξ=3× +2× +1× = .
【解析】(1)根據(jù)小彈子以相同的概率落入每個通道,在每一個分叉處小球落入那一個通道的概率是相同的,根據(jù)獨立重復試驗的概率公式得到結(jié)果,推出具有一般性的結(jié)論.(2)根據(jù)題意知變量ξ的可能取值是3,2,1,結(jié)合變量對應的事件和前一問做出的概率公式,寫出變量對應的概率和分布列,求出期望值.
【考點精析】利用離散型隨機變量及其分布列對題目進行判斷即可得到答案,需要熟知在射擊、產(chǎn)品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設(shè)離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列.
科目:高中數(shù)學 來源: 題型:
【題目】關(guān)于函數(shù)f(x)=﹣tan2x,有下列說法: ①f(x)的定義域是{x∈R|x≠ +kπ,k∈Z}②f(x)是奇函數(shù) ③在定義域上是增函數(shù) ④在每一個區(qū)間(﹣ + , + )(k∈Z)上是減函數(shù) ⑤最小正周期是π其中正確的是( )
A.①②③
B.②④⑤
C.②④
D.③④⑤
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某籃球隊與其他6支籃球隊依次進行6場比賽,每場均決出勝負,設(shè)這支籃球隊與其他籃球隊比賽中獲勝的事件是獨立的,并且獲勝的概率均為 .
(1)求這支籃球隊首次獲勝前已經(jīng)負了兩場的概率;
(2)求這支籃球隊在6場比賽中恰好獲勝3場的概率;
(3)求這支籃球隊在6場比賽中獲勝場數(shù)的期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐S﹣ABCD中,底面ABCD為正方形,△SAD是正三角形,P,Q分別是棱SC,AB的中點,且平面SAD⊥平面ABCD.
(1)求證:PQ∥平面SAD;
(2)求證:SQ⊥AC.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有以下命題:
①若f(x)=x3+(a﹣1)x2+3x+1沒有極值點,則﹣2<a<4;
②集合M={1,2,zi},i為虛數(shù)單位,N={3,4},M∩N={4},則復數(shù)z=﹣4i;
③若函數(shù)f(x)= ﹣m有兩個零點,則m< .
其中正確的是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)的定義域為D,若滿足①f(x)在D內(nèi)是單調(diào)函數(shù),②存在[m,n]D,使f(x)在[m,n]上的值域為 ,那么就稱y=f(x)為“好函數(shù)”.現(xiàn)有f(x)=loga(ax+k),(a>0,a≠1)是“好函數(shù)”,則k的取值范圍是( )
A.(0,+∞)
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com