(選修4-1:幾何證明選講)
如圖,△ABC是⊙O的內(nèi)接三角形,PA是⊙O的切線,PB交AC于點(diǎn)E,交⊙O于點(diǎn)D,若PE=PA,∠ABC=60°,PD=1,BD=8,求線段BC的長.
分析:利用弦切角定理即可得出∠PAE=60°,進(jìn)而得出△PAE是等邊三角形.再利用切割線定理和相交弦定理即可得出.
解答:解:∵PA是⊙O的切線,∴PA2=PD•PB,
∵PD=1,BD=8,∴PA2=1×9,解得PD=3.
∵∠ABC=60°,∴∠PAE=60°.
又∵PE=PA,∴△PAE是等邊三角形.
∴AE=3,ED=PE-PD=2.
由相交弦定理可得:BE•ED=AE•EC,∴6×2=3×EC,解得EC=4.
在△BEC中,由余弦定理可得BC2=62+42-2×6×4cos60°=28.
∴BC=2
7
點(diǎn)評:熟練掌握弦切角定理、等邊三角形的判定、切割線定理和相交弦定理是解題的關(guān)鍵..
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

選修4-1:幾何證明選講
已知⊙O的弦AB長為4,將線段AB延長到點(diǎn)P,使BP=2;過點(diǎn)P作直線PC切⊙O于點(diǎn)C;
(1)求線段PC的長;
(2)作⊙O的弦CD交AB于點(diǎn)Q(CQ<DQ),且Q為AB中點(diǎn),又CD=5,求線段CQ的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•?诙#┻x修4-1:幾何證明選講
切線AB與圓切于點(diǎn)B,圓內(nèi)有一點(diǎn)C滿足AB=AC,∠CAB的平分線AE交圓于D,E,延長EC交圓于F,延長DC交圓于G,連接FG.
(Ⅰ)證明:AC∥FG;
(Ⅱ)求證:EC=EG.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•徐州模擬)本題包括A、B、C、D四小題,請選定其中兩題,并在答題卡指定區(qū)域內(nèi)作答,
若多做,則按作答的前兩題評分.解答時應(yīng)寫出文字說明、證明過程或演算步驟.
A.選修4-1:幾何證明選講
如圖,半徑分別為R,r(R>r>0)的兩圓⊙O,⊙O1內(nèi)切于點(diǎn)T,P是外圓⊙O上任意一點(diǎn),連PT交⊙O1于點(diǎn)M,PN與內(nèi)圓⊙O1相切,切點(diǎn)為N.求證:PN:PM為定值.
B.選修4-2:矩陣與變換
已知矩陣M=
21
34

(1)求矩陣M的逆矩陣;
(2)求矩陣M的特征值及特征向量;
C.選修4-2:矩陣與變換
在平面直角坐標(biāo)系x0y中,求圓C的參數(shù)方程為
x=-1+rcosθ
y=rsinθ
為參數(shù)r>0),以O(shè)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρcos(θ+
π
4
)=2
2
.若直線l與圓C相切,求r的值.
D.選修4-5:不等式選講
已知實(shí)數(shù)a,b,c滿足a>b>c,且a+b+c=1,a2+b2+c2=1,求證:1<a+b<
4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-1:幾何證明選講
如圖,已知PA與⊙O相切于點(diǎn)A,PBC為⊙O的割線,弦CD∥AP,AD與BC相交于點(diǎn)E,F(xiàn)為CE上一點(diǎn),且DE2=EF•EC
(I)求證:A、P、D、F四點(diǎn)共圓
(II)若AE=6,DE=EB=4,求PA的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•南通一模)選修4-1:幾何證明選講
如圖,△ABC是⊙O的內(nèi)接三角形,若AD是△ABC的高,AE是⊙O的直徑,F(xiàn)是
BC
的中點(diǎn).求證:
(1)AB•AC=AE•AD;
(2)∠FAE=∠FAD.

查看答案和解析>>

同步練習(xí)冊答案