【題目】某養(yǎng)雞場有2500只雞準備對外出售從中隨機抽取了一部分雞,根據(jù)它們的質(zhì)量(單位:),繪制出如下的統(tǒng)計圖①和圖②請根據(jù)相關信息,解答下列問題:

(1)圖①中的值為___________;

(2)統(tǒng)計這組數(shù)據(jù)的平均數(shù)眾數(shù)和中位數(shù);

(3)根據(jù)樣本數(shù)據(jù),估計這2500只雞中,質(zhì)量為的約有多少只?

【答案】128;(2)平均數(shù);眾數(shù);中位數(shù)3

【解析】

(1)根據(jù)各種質(zhì)量的百分比之和為可得的值;

(2)根據(jù)眾數(shù)、中位數(shù)、加權(quán)平均數(shù)的定義計算即可;

(3)將樣本中質(zhì)量為數(shù)量所占比例乘以總數(shù)量即可.

(1)圖①中的值為

(2)這組數(shù)據(jù)的平均數(shù)為

眾數(shù)為,中位數(shù)為;

(3)估計這只雞中,質(zhì)量為的約有.

故答案為:(12)平均數(shù);眾數(shù);中位數(shù)3

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】給出兩塊面積相同的正三角形紙片如圖,要求用其中一塊剪拼成一個正三棱錐(正三棱錐的三個側(cè)面是全等的等腰三角形)模型,另一塊剪拼成一個正三棱柱(正三棱柱上、下底面是正三角形,側(cè)面是矩形)模型,使紙片正好用完,請設計一種剪拼方法,分別標示在圖(1)(2)中,并作簡要說明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,,,,均為邊長為的等邊三角形.

(1)求證:平面平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某大學藝術專業(yè)400名學生參加某次測評,根據(jù)男女學生人數(shù)比例,使用分層抽樣的方法從中隨機抽取了100名學生,記錄他們的分數(shù),將數(shù)據(jù)分成7組:[20,30),[30,40),┄,[80,90],并整理得到如下頻率分布直方圖:

(Ⅰ)從總體的400名學生中隨機抽取一人,估計其分數(shù)小于70的概率;

(Ⅱ)已知樣本中分數(shù)小于40的學生有5人,試估計總體中分數(shù)在區(qū)間[40,50)內(nèi)的人數(shù);

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,已知以M點為圓心的圓及其上一點.

1)設圓Ny軸相切,與圓M外切,且圓心在直線上,求圓N的標準方程;

2)設平行于OA的直線l與圓M相交于B,C兩點且,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點,點.已知拋物線(是常數(shù)),頂點為.

(1)當拋物線經(jīng)過點時,求頂點的坐標;

(2)若點軸下方,當時,求拋物線的解析式;

(3)無論取何值,該拋物線都經(jīng)過定點.時,求拋物線的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著資本市場的強勢進入,互聯(lián)網(wǎng)共享單車“忽如一夜春風來”,遍布了一二線城市的大街小巷.為了解共享單車在市的使用情況,某調(diào)查機構(gòu)借助網(wǎng)絡進行了問卷調(diào)查,并從參與調(diào)查的網(wǎng)友中抽取了200人進行抽樣分析,得到表格:(單位:人)

經(jīng)常使用

偶爾或不用

合計

30歲及以下

70

30

100

30歲以上

60

40

100

合計

130

70

200

(1)根據(jù)以上數(shù)據(jù),能否在犯錯誤的概率不超過0.15的前提下認為市使用共享單車情況與年齡有關?

(2)現(xiàn)從所抽取的30歲以上的網(wǎng)友中利用分層抽樣的方法再抽取5人.

(i)分別求這5人中經(jīng)常使用、偶爾或不用共享單車的人數(shù);

(ii)從這5人中,再隨機選出2人贈送一件禮品,求選出的2人中至少有1人經(jīng)常使用共享單車的概率.

參考公式: ,其中.

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,過函數(shù)的圖象上的兩點,軸的垂線,垂足分別為,,線段與函數(shù)的圖象交于點,且軸平行.

1)當,時,求實數(shù)的值;

(2)當時,求的最小值;

(3)已知,,若,為區(qū)間內(nèi)任意兩個變量,且,

求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設橢圓的左焦點為,離心率為,為圓的圓心.

(1)求橢圓的方程;

(2)已知過橢圓右焦點的直線交橢圓于兩點,過且與垂直的直線與圓交于兩點,求四邊形面積的取值范圍.

查看答案和解析>>

同步練習冊答案