在平面直角坐標(biāo)系xOy中,點(diǎn)B與點(diǎn)A(-1,1)關(guān)于原點(diǎn)O對稱,P是動(dòng)點(diǎn),且直線AP與BP的斜率之積等于-

(Ⅰ)求動(dòng)點(diǎn)P的軌跡方程;

(Ⅱ)設(shè)直線AP和BP分別與直線x=3交于點(diǎn)M,N,問:是否存在點(diǎn)P使得△PAB與△PMN的面積相等?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.

答案:
解析:

  (Ⅰ)解:因?yàn)辄c(diǎn)B與A關(guān)于原點(diǎn)對稱,所以點(diǎn)得坐標(biāo)為

  設(shè)點(diǎn)的坐標(biāo)為

  由題意得

  化簡得

  故動(dòng)點(diǎn)的軌跡方程為

  (Ⅱ)解法一:設(shè)點(diǎn)的坐標(biāo)為,點(diǎn),得坐標(biāo)分別為

  則直線的方程為,直線的方程為

  令,

  于是得面積

  

  又直線的方程為,,

  點(diǎn)到直線的距離

  于是的面積

  

  當(dāng)時(shí),得

  又,

  所以,解得

  因?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/60A2/2218/0019/686b72a5cdeebb5dbdb7b94b7ae531f5/C/Image191.gif" width=90 height=25>,所以

  故存在點(diǎn)使得的面積相等,此時(shí)點(diǎn)的坐標(biāo)為

  解法二:若存在點(diǎn)使得的面積相等,設(shè)點(diǎn)的坐標(biāo)為

  則

  因?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/60A2/2218/0019/686b72a5cdeebb5dbdb7b94b7ae531f5/C/Image199.gif" width=151 height=18>,

  所以

  所以

  即,解得

  因?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/60A2/2218/0019/686b72a5cdeebb5dbdb7b94b7ae531f5/C/Image205.gif" width=90 height=25>,所以

  故存在點(diǎn)S使得的面積相等,此時(shí)點(diǎn)的坐標(biāo)為


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xoy中,已知圓心在直線y=x+4上,半徑為2
2
的圓C經(jīng)過坐標(biāo)原點(diǎn)O,橢圓
x2
a2
+
y2
9
=1(a>0)
與圓C的一個(gè)交點(diǎn)到橢圓兩焦點(diǎn)的距離之和為10.
(1)求圓C的方程;
(2)若F為橢圓的右焦點(diǎn),點(diǎn)P在圓C上,且滿足PF=4,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,銳角α和鈍角β的終邊分別與單位圓交于A,B兩點(diǎn).若點(diǎn)A的橫坐標(biāo)是
3
5
,點(diǎn)B的縱坐標(biāo)是
12
13
,則sin(α+β)的值是
16
65
16
65

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,若焦點(diǎn)在x軸的橢圓
x2
m
+
y2
3
=1
的離心率為
1
2
,則m的值為
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•泰州三模)選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
3t
,0)
,其中t≠0.設(shè)直線AC與BD的交點(diǎn)為P,求動(dòng)點(diǎn)P的軌跡的參數(shù)方程(以t為參數(shù))及普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•東莞一模)在平面直角坐標(biāo)系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點(diǎn)為F1(-1,0),且橢圓C的離心率e=
1
2

(1)求橢圓C的方程;
(2)設(shè)橢圓C的上下頂點(diǎn)分別為A1,A2,Q是橢圓C上異于A1,A2的任一點(diǎn),直線QA1,QA2分別交x軸于點(diǎn)S,T,證明:|OS|•|OT|為定值,并求出該定值;
(3)在橢圓C上,是否存在點(diǎn)M(m,n),使得直線l:mx+ny=2與圓O:x2+y2=
16
7
相交于不同的兩點(diǎn)A、B,且△OAB的面積最大?若存在,求出點(diǎn)M的坐標(biāo)及對應(yīng)的△OAB的面積;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案