已知f(x)=x2+ax+b,滿足f(1)=0,f(2)=0,則f(-1)=
6
6
分析:由題設(shè)可知
1+a+b=0
4+2a+b=0
,由此能求出f(x)=x2-3x+2,進(jìn)而能夠求出f(-1).
解答:解:∵f(x)=x2+ax+b,滿足f(1)=0,f(2)=0,
1+a+b=0
4+2a+b=0
,
解得a=-3,b=2.
∴f(x)=x2-3x+2,
∴f(-1)=1+3+2=6.
故答案為:6.
點(diǎn)評(píng):本昰考查二次函數(shù)的性質(zhì)和應(yīng)用,解題時(shí)要認(rèn)真審題,合理地建立方程組,先求出f(x),再解f(-1).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=x2+ax+b(a,b∈R的定義域?yàn)閇-1,1].
(1)記|f(x)|的最大值為M,求證:M≥
1
2
.
(2)求出(1)中的M=
1
2
時(shí),f(x)
的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=x2+x+1,則f(
2
)
=
 
;f[f(
2
)
]=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=x2+2x,數(shù)列{an}滿足a1=3,an+1=f′(an)-n-1,數(shù)列{bn}滿足b1=2,bn+1=f(bn).
(1)求證:數(shù)列{an-n}為等比數(shù)列;
(2)令cn=
1
an-n-1
,求證:c2+c3+…+cn
2
3
;
(3)求證:
1
3
1
1+b1
+
1
1+b2
+…+
1
1+bn
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=x2-x+k,若log2f(2)=2,
(1)確定k的值;
(2)求f(x)+
9f(x)
的最小值及對(duì)應(yīng)的x值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=x2+(a+1)x+lg|a+2|(a≠-2,a∈R),
(Ⅰ)若f(x)能表示成一個(gè)奇函數(shù)g(x)和一個(gè)偶函數(shù)h(x)的和,求g(x)和h(x)的解析式;
(Ⅱ)若f(x)和g(x)在區(qū)間(-∞,(a+1)2]上都是減函數(shù),求a的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,比較f(1)和
16
的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案