1.直線y=mx+1與曲線x=2+$\sqrt{1-{y}^{2}}$的圖象始終有交點(diǎn),則m的取值范圍是(  )
A.(-1,0)B.[-1,0]C.(-1,-$\frac{1}{3}$)D.[-1,-$\frac{1}{3}$]

分析 直線y=mx+1恒過C(0,1)點(diǎn),曲線x=2+$\sqrt{1-{y}^{2}}$ 知x≥2,且可轉(zhuǎn)化為:(x-2)2+y2=1 (x≥2),利用數(shù)形結(jié)合即可求解.

解答 解:由題意知:直線y=mx+1恒過C(0,1)點(diǎn);
曲線x=2+$\sqrt{1-{y}^{2}}$ 知x≥2,且可轉(zhuǎn)化為:(x-2)2+y2=1 (x≥2),
即以(2,0)為圓心,半徑R=1的半圓;
由圖知:A(2,1),B(2,-1);
kBC=$\frac{1-(-1)}{0-2}$=-1;kAC=0;
故m的取值范圍為[-1,0]
故選:B

點(diǎn)評(píng) 本題主要考查了直線與圓的位置關(guān)系與交點(diǎn),利用數(shù)形結(jié)合與斜率知識(shí)點(diǎn),屬中等題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)F1(-c,0),F(xiàn)2(c,0)是橢圓C1:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)與雙曲線C2有公共焦點(diǎn)F1、F2,(F1、F2分別為左、右焦點(diǎn)),它們?cè)诘谝幌笙藿挥邳c(diǎn)M,離心率分別為e1和e2,線段MF1的垂直平分線過F2,則$\frac{{{e_2}-{e_1}}}{{{e_1}{e_2}}}$的值為( 。
A.$2\sqrt{2}$B.$3\sqrt{2}$C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)f(x)=(kx+4)lnx-x(x>1),若f(x)>0的解集為(s,t),且(s,t)中只有一個(gè)整數(shù),則實(shí)數(shù)k的取值范圍為( 。
A.($\frac{1}{ln2}$-2,$\frac{1}{ln3}$-$\frac{4}{3}$)B.($\frac{1}{ln2}$-2,$\frac{1}{ln3}$-$\frac{4}{3}$]C.($\frac{1}{ln3}$-$\frac{4}{3}$,$\frac{1}{2ln2}$-1]D.($\frac{1}{ln3}$-$\frac{4}{3}$,$\frac{1}{2ln2}$-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.對(duì)于函數(shù)f(x)=xex有以下命題:
①函數(shù)f(x)只有一個(gè)零點(diǎn); 
②函數(shù)f(x)最小值為-e; 
③函數(shù)f(x)沒有最大值; 
④函數(shù)f(x)在區(qū)間(-∞,0)上單調(diào)遞減.
其中正確的命題是(只填序號(hào))①③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在△ABC中,a=2,cos C=-$\frac{1}{4}$,3sin A=2sin B,則c=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=(x3-6x2+3x+t)ex,t∈R.
(1)若函數(shù)f(x)有三個(gè)極值點(diǎn),求t的取值范圍;
(2)若函數(shù)f(x)在x=a,x=b,x=c(a<b<c)處取得極值,且a+c=2b2,求f(x)的零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知$A(\sqrt{3},2),F(xiàn)(\sqrt{3},0)$,P是橢圓$\frac{x^2}{4}+{y^2}=1$上的任一點(diǎn),則|PA|-|PF|的取值范圍是[0,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.一個(gè)幾何體的三視圖如圖所示,則這個(gè)幾何體是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.圓x2+(y-1)2=4上點(diǎn)到曲線f(x)=-x3+3x2在點(diǎn)(1,f(1))處的切線的最遠(yuǎn)距離為( 。
A.$\frac{\sqrt{10}}{4}$B.$\frac{10+\sqrt{10}}{5}$C.$\frac{10-\sqrt{10}}{5}$D.$\frac{10+2\sqrt{10}}{5}$

查看答案和解析>>

同步練習(xí)冊(cè)答案