【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知直線的極坐標(biāo)方程是以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立極坐標(biāo)系,曲線的參數(shù)方程為為參數(shù).

(1)寫出直線的普通方程與曲線的直角坐標(biāo)方程;

(2)設(shè)為曲線上任意一點(diǎn),求的最小值.

【答案】(1);(2).

【解析】試題分析:1)根據(jù)直線的極坐標(biāo)方程,即可求得直線l的直角坐標(biāo)公式,由橢圓C的參數(shù)方程即可求得曲線C的直角坐標(biāo)方程;
2)由(1)可得丨x-y-4=2cosφ-sinφ-4丨,根據(jù)輔助角公式及正弦函數(shù)的性質(zhì),即可求得|x-y-4|的最小值.

試題解析:

1ρcosθ-ρsinθ=4,將x=ρcosθy=ρsinθ代入即得直線l的直角坐標(biāo)方程為 ;曲線的參數(shù)方程為為參數(shù))所以.

2)設(shè),則丨x-y-4丨=丨2cosφ-sinφ-4丨=|cos(φ+α)-4丨=4-cos(φ+α)(tanα=)當(dāng)cos(φ+α)=1時(shí),|x-y-4|取最小值,最小值為4-.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如下圖,在空間直角坐標(biāo)系,正四面體(各條棱均相等的三棱錐)的頂點(diǎn)分別在, , 軸上.

(Ⅰ)求證: 平面;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓與拋物線y2x有一個(gè)相同的焦點(diǎn),且該橢圓的離心率為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過點(diǎn)P(0,1)的直線與該橢圓交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),若,求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地隨著經(jīng)濟(jì)的發(fā)展,居民收入逐年增長,下表是該地一建設(shè)銀行連續(xù)五年的儲蓄存款(年底余額),如下表1:

年份x

2011

2012

2013

2014

2015

儲蓄存款y(千億元)

5

6

7

8

10

為了研究計(jì)算的方便,工作人員將上表的數(shù)據(jù)進(jìn)行了處理, 得到下表2:

時(shí)間代號t

1

2

3

4

5

z

0

1

2

3

5

(Ⅰ)求z關(guān)于t的線性回歸方程;

(Ⅱ)通過()中的方程,求出y關(guān)于x的回歸方程;

(Ⅲ)用所求回歸方程預(yù)測到2020年年底,該地儲蓄存款額可達(dá)多少?

(附:對于線性回歸方程,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)求曲線在點(diǎn)處的切線方程;

2)求的單調(diào)區(qū)間;

3)若對于任意,都有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著“中華好詩詞”節(jié)目的播出,掀起了全民誦讀傳統(tǒng)詩詞經(jīng)典的熱潮.某社團(tuán)為調(diào)查大學(xué)生對于“中華詩詞”的喜好,從甲、乙兩所大學(xué)各隨機(jī)抽取了40名學(xué)生,記錄他們每天學(xué)習(xí)“中華詩詞”的時(shí)間,并整理得到如下頻率分布直方圖:

根據(jù)學(xué)生每天學(xué)習(xí)“中華詩詞”的時(shí)間,可以將學(xué)生對于“中華詩詞”的喜好程度分為三個(gè)等級 :

(Ⅰ)從甲大學(xué)中隨機(jī)選出一名學(xué)生,試估計(jì)其“愛好”中華詩詞的概率;

()從兩組“癡迷”的同學(xué)中隨機(jī)選出2人,記為選出的兩人中甲大學(xué)的人數(shù),求的分布列和數(shù)學(xué)期望

()試判斷選出的這兩組學(xué)生每天學(xué)習(xí)“中華詩詞”時(shí)間的平均值的大小,及方差的大小.(只需寫出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1求曲線在點(diǎn)處的切線方程;

2求證:存在唯一的,使得曲線在點(diǎn)處的切線的斜率為

3比較的大小,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)在橢圓軸的垂線,垂足為點(diǎn)滿足.求點(diǎn)的軌跡方程;

的直線與點(diǎn)的軌跡交于兩點(diǎn),作與垂直的直線與點(diǎn)的軌跡交于兩點(diǎn),求證 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左焦點(diǎn)與拋物線 的焦點(diǎn)重合,橢圓的離心率為,過點(diǎn)作斜率不為0的直線,交橢圓兩點(diǎn),點(diǎn),且為定值.

(1)求橢圓的方程;

(2)求面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案