(本小題14分)
如圖,在四棱錐V-ABCD中底面ABCD是正方形,側(cè)面VAD是正三角形,
平面VAD
(1)證明:AB;
(2)求面VAD與面VDB所成的二面角的余弦值。
方法一:(用傳統(tǒng)方法)(1)證明:平面VAD平面ABCD,ABAD,AB平面ABCD,
面VADABCD=AD,面VAD
(2) 取VD中點(diǎn)E,連接AE,BE,是正三角形,
面VAD, AE, ABVD,ABAE
ABVD, ABAE=A,且AB,AE平面ABE, VD平面ABE,
,BEVD,是所求的二面角的平面角。
在RT中,,
方法二:(空間向量法)以D為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系如圖。
(1)證明:不妨設(shè)A(1,0,0), B(1,1,0), ,,,
因此AB與平面VAD內(nèi)兩條相交直線VA,AD都垂直,面VAD
(2)取VD的中點(diǎn)E,則,
,由=0,得,因此是所求二面角的平面角。
【解析】略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題14分)如圖,三棱錐中,平面,
,,分別是上
的動(dòng)點(diǎn),且平面,二面角為.
(1)求證:平面;
(2)若,求直線與平面所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:寧波市2010屆高三三?荚囄目茢(shù)學(xué)試題 題型:解答題
(本小題14分)如圖,三棱錐中,平面,
,,分別是上
的動(dòng)點(diǎn),且平面,二面角為.
(1)求證:平面;
(2)若,求直線與平面所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013屆廣東省高二上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷 題型:解答題
(本小題14分)如圖所示,在四棱錐中,底面為矩形,側(cè)棱底面,為的中點(diǎn).
(1)求直線與所成角的余弦值;
(2)在側(cè)面內(nèi)找一點(diǎn),使平面,并分別求出點(diǎn)到和的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年江蘇省揚(yáng)州市高三第四次模擬考試數(shù)學(xué)試題 題型:解答題
(本小題14分)
如圖,在直三棱柱中,,點(diǎn)在邊上,。
(1)求證:平面;
(2)如果點(diǎn)是的中點(diǎn),求證:平面 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com