11.某小區(qū)一住戶在樓頂違規(guī)私自建了“陽(yáng)光房”,該小區(qū)其他居民對(duì)此意見很大,通過物業(yè)和城管部門多次上門協(xié)調(diào),該住戶終于拆除了“陽(yáng)光房”,對(duì)此有人認(rèn)為既然已經(jīng)建成再拆除太可惜了,為此業(yè)主委員會(huì)通過隨機(jī)詢問小區(qū)100名性別不同的居民對(duì)此件事情的看法,得到如下的2×2列聯(lián)表
認(rèn)為應(yīng)該拆除認(rèn)為太可惜了總計(jì)
451055
301545
總計(jì)7525100
附:
P(K2≥k)0.100.050.025
k2.7063.8415.024
K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
參照附表,由此可知下列選項(xiàng)正確的是( 。
A.在犯錯(cuò)誤的概率不超過1%的前提下,認(rèn)為“是否認(rèn)為拆除太可惜了與性別有關(guān)”
B.在犯錯(cuò)誤的概率不超過1%的前提下,認(rèn)為“是否認(rèn)為拆除太可惜了與性別無關(guān)”
C.有90%以上的把握認(rèn)為“是否認(rèn)為拆除太可惜了與性別有關(guān)”
D.有90%以上的把握認(rèn)為“是否認(rèn)為拆除太可惜了與性別無關(guān)”

分析 由表中數(shù)據(jù)求得觀測(cè)值公式求得K2的近似值,同觀測(cè)值表進(jìn)行檢驗(yàn),得到觀測(cè)值對(duì)應(yīng)的結(jié)果,得到結(jié)論.

解答 解:由題意知本題所給的觀測(cè)值,K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
=$\frac{100(45×15-10×35)^{2}}{75×25×55×45}$≈3.030>2.706,
∴有90%以上的把握認(rèn)為“是否認(rèn)為拆除太可惜了與性別有關(guān)”,
故選:C.

點(diǎn)評(píng) 本題考查獨(dú)立性檢驗(yàn)的應(yīng)用,由對(duì)應(yīng)關(guān)系轉(zhuǎn)化表述方法是解決問題的關(guān)鍵,考查計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若Sn是數(shù)列[an}的前n項(xiàng)的和,且Sn=-n2+6n+7,則數(shù)列{an}的最大項(xiàng)的值為12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)f(x)=|2x-1|+|x+1|.
(1)解不等式f(x)≤3;
(2)若不等式m|x|≤f(x)恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=|x-2|+|x-3|,
(1)解不等式:f(x)≤2;
(2)方程f(x)=ax-2有解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=$\frac{{x}^{3}}{3}$-ax.
(1)若x=1是函數(shù)f(x)的極值點(diǎn),求a的值;
(2)若a>0,求函數(shù)y=f(x)在區(qū)間[0,1]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在平面直角坐標(biāo)系xOy中,A(1,3),B(4,2),若直線ax-y-2a=0與線段AB有公共點(diǎn),則實(shí)數(shù)a的取值范圍是(-∞,-3]∪[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=|2x+1|-|x-4|.
(1)解不等式f(x)≥0;
(2)若存在x0∈[-7,7],使得f(x0)+$\frac{1}{2}$m2<4m成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖所示,正方形ABCD所在的平面與三角形CDE所在的平面交于CD,且AE⊥平面CDE.
(1)求證:平面ABCD⊥平面ADE;
(2)已知AB=2AE=2,求三棱錐C-BDE的高h(yuǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知A、B、C、D為同一平面上的四個(gè)點(diǎn),且滿足AB=2,BC=CD=DA=1,∠BAD=θ,△ABD的面積為S,△BCD的面積為T.
(1)當(dāng)θ=$\frac{π}{3}$時(shí),求T的值;
(2)當(dāng)S=T時(shí),求cosθ的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案