已知各項(xiàng)均為正數(shù)的等比數(shù)列{an}的首項(xiàng)a1=2,Sn為其前n項(xiàng)和,若5S1,S3,3S2成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log2an,cn=,記數(shù)列{cn}的前n項(xiàng)和Tn.若對(duì)?n∈N*,Tn≤k(n+4)恒成立,求實(shí)數(shù)k的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)數(shù)列滿足,.
(1)求數(shù)列的通項(xiàng);
(2)設(shè),求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列{an}的前n項(xiàng)和為Sn,3Sn=an-1(n∈N?).
(1)求a1,a2;
(2)求證:數(shù)列{an}是等比數(shù)列;
(3)求an和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知正項(xiàng)數(shù)列{an},其前n項(xiàng)和Sn滿足6Sn=+3an+2,且a1,a2,a6是等比數(shù)列{bn}的前三項(xiàng).
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)記Tn=a1bn+a2bn-1+…+anb1,n∈N*,證明:3Tn+1=2bn+1-an+1(n∈N*).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)數(shù)列{an}前n項(xiàng)和為Sn,點(diǎn)均在直線上.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè),Tn是數(shù)列{bn}的前n項(xiàng)和,試求Tn;
(3)設(shè)cn=anbn,Rn是數(shù)列{cn}的前n項(xiàng)和,試求Rn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列的前項(xiàng)和為,且.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè),,求使恒成立的實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
數(shù)列的前n項(xiàng)和為,
(I)證明:數(shù)列是等比數(shù)列;
(Ⅱ)若,數(shù)列的前n項(xiàng)和為,求不超過(guò)的最大整數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
等比數(shù)列{an}的前n項(xiàng)和為Sn,已知a1+an=66,a2an-1=128,Sn=126,求n和公比q的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列{an}的前n項(xiàng)和為Sn,若S1=1,S2=2,且Sn+1-3Sn+2Sn-1=0(n∈N*且n≥2),求該數(shù)列的通項(xiàng)公式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com