分析 (Ⅰ)由f(x)=$\frac{{x}^{2}}{1+{x}^{2}}$,x∈R,利用代入法能求出f(2)+f($\frac{1}{2}$),f(3)+f($\frac{1}{3}$),f(4)+f($\frac{1}{4}$)的值.
(Ⅱ)猜想:f(x)+f($\frac{1}{x}$)=1.再利用函數(shù)性質(zhì)進(jìn)行證明.
解答 解:(Ⅰ)∵f(x)=$\frac{{x}^{2}}{1+{x}^{2}}$,x∈R,
∴f(2)+f($\frac{1}{2}$)=$\frac{4}{1+4}+\frac{\frac{1}{4}}{1+\frac{1}{4}}$=$\frac{4}{1+4}+\frac{1}{4+1}$=1,
f(3)+f($\frac{1}{3}$)=$\frac{9}{1+9}+\frac{\frac{1}{9}}{1+\frac{1}{9}}$=$\frac{9}{1+9}+\frac{1}{9+1}$=1,
f(4)+f($\frac{1}{4}$)=$\frac{16}{1+16}+\frac{\frac{1}{16}}{1+\frac{1}{16}}$=$\frac{16}{1+16}+\frac{1}{16+1}$=1.
(Ⅱ)猜想:f(x)+f($\frac{1}{x}$)=1.
證明:∵f(x)=$\frac{{x}^{2}}{1+{x}^{2}}$,x∈R,
∴$f(x)+f(\frac{1}{x})$=$\frac{{x}^{2}}{1+{x}^{2}}$+$\frac{\frac{1}{{x}^{2}}}{1+\frac{1}{{x}^{2}}}$=$\frac{{x}^{2}}{1+{x}^{2}}$+$\frac{1}{{x}^{2}+1}$=1.
點(diǎn)評(píng) 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | n=2011時(shí),該命題成立 | B. | n=2013時(shí),該命題成立 | ||
C. | n=2011時(shí),該命題不成立 | D. | n=2013時(shí),該命題不成立 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com