【題目】下列結(jié)論中

①若空間向量,則的充要條件;

②若的必要不充分條件,則實(shí)數(shù)的取值范圍為;

③已知,為兩個(gè)不同平面,,為兩條直線,,,,則的充要條件;

④已知向量為平面的法向量,為直線的方向向量,則的充要條件.

其中正確命題的序號(hào)有(

A.②③B.②④C.②③④D.①②③④

【答案】B

【解析】

①由可判斷①不正確;

②由的必要不充分條件,可得,從而得到正確;

③根據(jù)面面垂直的性質(zhì)和判定定理即可判斷;

④結(jié)合利用法向量與方向向量的定義即可判斷.

:①空間向量,,

,

所以的充要條件錯(cuò)誤,故①不正確;

②若的必要不充分條件,,

所以,故②正確;

③若,則由條件可得,,所以;

,則根據(jù)條件得不到,故③不正確;

④若,,因?yàn)?/span>為直線的方向向量,所以;

,,因?yàn)?/span>為平面的法向量,所以,故④正確.

綜上,正確命題的序號(hào)為②④.

故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】四棱錐中,底面是菱形,.

(1)求證:;

(2)若的中點(diǎn),求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,橢圓的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

(1)求橢圓的極坐標(biāo)方程和直線的直角坐標(biāo)方程;

(2)若點(diǎn)的極坐標(biāo)為,直線與橢圓相交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐的底面為直角梯形,,且,,,平面底面,的中點(diǎn),為等邊三角形,是棱上的一點(diǎn),設(shè)不重合).

1)當(dāng)時(shí),求三棱錐的體積;

2)若平面,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓為坐標(biāo)原點(diǎn),為橢圓上任意一點(diǎn),,分別為橢圓的左、右焦點(diǎn),且,依次成等比數(shù)列,其離心率為.過(guò)點(diǎn)的動(dòng)直線與橢圓相交于、兩點(diǎn).

1)求橢圓的標(biāo)準(zhǔn)方程;

2)當(dāng)時(shí),求直線的方程;

3)在平面直角坐標(biāo)系中,若存在與點(diǎn)不同的點(diǎn),使得成立,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)統(tǒng)計(jì)調(diào)查數(shù)據(jù)顯示:某企業(yè)某種產(chǎn)品的質(zhì)量指標(biāo)值服從正態(tài)分布,從該企業(yè)生產(chǎn)的這種產(chǎn)品(數(shù)量很大)中抽取100件,測(cè)量這100件產(chǎn)品的質(zhì)量指標(biāo)值,由測(cè)量結(jié)果得到如圖所示的頻率分布直方圖,質(zhì)量指標(biāo)值落在區(qū)間,,內(nèi)的頻率之比為.

1)求這100件產(chǎn)品質(zhì)量指標(biāo)值落在區(qū)間內(nèi)的頻率;

2)根據(jù)頻率分布直方圖求平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

3)若取這100件產(chǎn)品指標(biāo)的平均值,從這種產(chǎn)品(數(shù)量很大)中任取3個(gè),求至少有1個(gè)落在區(qū)間的概率.

參考數(shù)據(jù):,若,則;;.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一大批產(chǎn)品,其驗(yàn)收方案如下,先做第一次檢驗(yàn):從中任取8件,經(jīng)檢驗(yàn)都為優(yōu)質(zhì)品時(shí)接受這批產(chǎn)品,若優(yōu)質(zhì)品數(shù)小于6件則拒收;否則做第二次檢驗(yàn),其做法是從產(chǎn)品中再另任取3件,逐一檢驗(yàn),若檢測(cè)過(guò)程中檢測(cè)出非優(yōu)質(zhì)品就要終止檢驗(yàn)且拒收這批產(chǎn)品,否則繼續(xù)產(chǎn)品檢測(cè),且僅當(dāng)這3件產(chǎn)品都為優(yōu)質(zhì)品時(shí)接受這批產(chǎn)品.若產(chǎn)品的優(yōu)質(zhì)品率為0.9.且各件產(chǎn)品是否為優(yōu)質(zhì)品相互獨(dú)立.

1)記為第一次檢驗(yàn)的8件產(chǎn)品中優(yōu)質(zhì)品的件數(shù),求的期望與方差;

2)求這批產(chǎn)品被接受的概率;

3)若第一次檢測(cè)費(fèi)用固定為1000元,第二次檢測(cè)費(fèi)用為每件產(chǎn)品100元,記為整個(gè)產(chǎn)品檢驗(yàn)過(guò)程中的總費(fèi)用,求的分布列.

(附:,,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè).

1)若,且為函數(shù)的一個(gè)極值點(diǎn),求函數(shù)的單調(diào)遞增區(qū)間;

2)若,且函數(shù)的圖象恒在軸下方,其中是自然對(duì)數(shù)的底數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在四棱錐P-ABCD中,底面ABCD是邊長(zhǎng)為a的正方形,側(cè)面底面ABCD,且,若E,F分別為PC,BD的中點(diǎn).

(I)求證:EF//平面PAD;

(II)求三棱錐F-DEC的體積;

(III)在線段CD上是否存在一點(diǎn)G,使得平面平面PDC?若存在,請(qǐng)說(shuō)明其位置,并加以證明;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案