【題目】如圖,在四棱錐中,,底面ABCD是邊長(zhǎng)為3的正方形,EFG分別是棱ABPBPC的中點(diǎn),,.

(Ⅰ)求證:平面EFG∥平面PAD;

(Ⅱ)求三棱錐的體積.

【答案】(Ⅰ)見(jiàn)解析 (Ⅱ)

【解析】

(Ⅰ) 根據(jù)中位線定理可得,而,所以,再根據(jù)面面平行的判定定理即可證出;

(Ⅱ) 易證,由(Ⅰ)知,平面EFG∥平面PAD,且E是棱AB的中點(diǎn),則,所以,,再分別求出,即得.

(Ⅰ)∵EFG分別是棱ABPBPC的中點(diǎn),∴,

∵底面ABCD是正方形,∴

,,

,,,

∴平面EFG∥平面PAD

(Ⅱ)∵底面ABCD是正方形,∴

,且,,.由(Ⅰ)知,平面EFG∥平面PAD,且E是棱AB的中點(diǎn),

由已知和(Ⅰ)的解答,可得,,,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)為F,點(diǎn)在此拋物線上,,不過(guò)原點(diǎn)的直線與拋物線C交于A,B兩點(diǎn),以AB為直徑的圓M過(guò)坐標(biāo)原點(diǎn).

(1)求拋物線C的方程;

(2)證明:直線恒過(guò)定點(diǎn);

(3)若線段AB中點(diǎn)的縱坐標(biāo)為2,求此時(shí)直線和圓M的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)生產(chǎn)一種產(chǎn)品,從流水線上隨機(jī)抽取100件產(chǎn)品,統(tǒng)計(jì)其質(zhì)量指標(biāo)值并繪制頻率分布直方圖(如圖):

規(guī)定產(chǎn)品的質(zhì)量指標(biāo)值在的為劣質(zhì)品,在的為優(yōu)等品,在的為特優(yōu)品,銷(xiāo)售時(shí)劣質(zhì)品每件虧損1元,優(yōu)等品每件盈利3元,特優(yōu)品每件盈利5元.以這100 件產(chǎn)品的質(zhì)量指標(biāo)值位于各區(qū)間的頻率代替產(chǎn)品的質(zhì)量指標(biāo)值位于該區(qū)間的概率.

(1)求每件產(chǎn)品的平均銷(xiāo)售利潤(rùn);

(2)該企業(yè)為了解年?duì)I銷(xiāo)費(fèi)用(單位:萬(wàn)元)對(duì)年銷(xiāo)售量(單位:萬(wàn)件)的影響,對(duì)近5年年?duì)I銷(xiāo)費(fèi)用和年銷(xiāo)售量數(shù)據(jù)做了初步處理,得到如圖的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.

16.30

23.20

0.81

1.62

表中,,.

根據(jù)散點(diǎn)圖判斷,可以作為年銷(xiāo)售量(萬(wàn)件)關(guān)于年?duì)I銷(xiāo)費(fèi)用(萬(wàn)元)的回歸方程.

①求關(guān)于的回歸方程;

⑦用所求的回歸方程估計(jì)該企業(yè)應(yīng)投人多少年?duì)I銷(xiāo)費(fèi),才能使得該企業(yè)的年收益的預(yù)報(bào)值達(dá)到最大?(收益=銷(xiāo)售利潤(rùn)營(yíng)銷(xiāo)費(fèi)用,取

附:對(duì)于一組數(shù)據(jù),,…,其回歸直線均斜率和截距的最小二乘估計(jì)分別為,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某籃球運(yùn)動(dòng)員的投籃命中率為,他想提高自己的投籃水平,制定了一個(gè)夏季訓(xùn)練計(jì)劃為了了解訓(xùn)練效果,執(zhí)行訓(xùn)練前,他統(tǒng)計(jì)了10場(chǎng)比賽的得分,計(jì)算出得分的中位數(shù)為15分,平均得分為15分,得分的方差為執(zhí)行訓(xùn)練后也統(tǒng)計(jì)了10場(chǎng)比賽的得分,成績(jī)莖葉圖如圖所示:

請(qǐng)計(jì)算該籃球運(yùn)動(dòng)員執(zhí)行訓(xùn)練后統(tǒng)計(jì)的10場(chǎng)比賽得分的中位數(shù)、平均得分與方差;

如果僅從執(zhí)行訓(xùn)練前后統(tǒng)計(jì)的各10場(chǎng)比賽得分?jǐn)?shù)據(jù)分析,你認(rèn)為訓(xùn)練計(jì)劃對(duì)該運(yùn)動(dòng)員的投籃水平的提高是否有幫助?為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著中國(guó)教育改革的不斷深入,越來(lái)越多的教育問(wèn)題不斷涌現(xiàn).“衡水中學(xué)模式入駐浙江,可以說(shuō)是應(yīng)試教育與素質(zhì)教育的強(qiáng)烈碰撞.這一事件引起了廣大市民的密切關(guān)注.為了了解廣大市民關(guān)注教育問(wèn)題與性別是否有關(guān),記者在北京,上海,深圳隨機(jī)調(diào)查了100位市民,其中男性55位,女性45.男性中有45位關(guān)注教育問(wèn)題,其余的不關(guān)注教育問(wèn)題;女性中有30位關(guān)注教育問(wèn)題,其余的不關(guān)注教育問(wèn)題.

1)根據(jù)以上數(shù)據(jù)完成下列2×2列聯(lián)表;

關(guān)注教育問(wèn)題

不關(guān)注教育問(wèn)題

合計(jì)

30

45

45

55

合計(jì)

100

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

2)能否在犯錯(cuò)誤的概率不超過(guò)0.025的前提下認(rèn)為是否關(guān)注教育與性別有關(guān)系?

參考公式:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知2017年市居民平均家庭凈收入走勢(shì)圖(家庭凈收入=家庭總收入一家庭總支出),如圖所示,則下列說(shuō)法錯(cuò)誤的是( )

A. 2017年2月份市居國(guó)民的平均家庭凈收入最低

B. 2017年4,5,6月份市居民的平均家庭凈收入比7、8、9月份的平均家庭凈收入波動(dòng)小

C. 2017年有3個(gè)月市居民的平均家庭凈收入低于4000元

D. 2017年9、10、11、12月份平均家庭凈收入持續(xù)降低

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某企業(yè)有職工5000人,其中男職工3500人,女職工1500人.該企業(yè)為了豐富職工的業(yè)余生活,決定新建職工活動(dòng)中心,為此,該企業(yè)工會(huì)采用分層抽樣的方法,隨機(jī)抽取了300名職工每周的平均運(yùn)動(dòng)時(shí)間(單位:h),匯總得到頻率分布表(如表所示),并據(jù)此來(lái)估計(jì)該企業(yè)職工每周的運(yùn)動(dòng)時(shí)間:

平均運(yùn)動(dòng)時(shí)間

頻數(shù)

頻率

[0,2

15

0.05

[24

m

0.2

[4,6

45

0.15

[6,8

755

0.25

[8,10

90

0.3

[10,12

p

n

合計(jì)

300

1

1)求抽取的女職工的人數(shù);

2)①根據(jù)頻率分布表,求出m、n、p的值,完成如圖所示的頻率分布直方圖,并估計(jì)該企業(yè)職工每周的平均運(yùn)動(dòng)時(shí)間不低于4h的概率;

男職工

女職工

總計(jì)

平均運(yùn)動(dòng)時(shí)間低于4h

平均運(yùn)動(dòng)時(shí)間不低于4h

總計(jì)

②若在樣本數(shù)據(jù)中,有60名女職工每周的平均運(yùn)動(dòng)時(shí)間不低于4h,請(qǐng)完成以下2×2列聯(lián)表,并判斷是否有95%以上的把握認(rèn)為“該企業(yè)職工毎周的平均運(yùn)動(dòng)時(shí)間不低于4h與性別有關(guān)”.

附:K2=,其中n=a+b+c+d

PK2k0

0.25

0.15

0.10

0.05

0.025

k0

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平行四邊形中,,,過(guò)點(diǎn)作的垂線,交的延長(zhǎng)線于點(diǎn),.連結(jié),交于點(diǎn),如圖1,將沿折起,使得點(diǎn)到達(dá)點(diǎn)的位置,如圖2.

(1)證明:平面平面;

(2)若的中點(diǎn),的中點(diǎn),且平面平面,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,,,是由直線引出的三個(gè)不重合的半平面,其中二面角大小為60°,在二面角內(nèi)繞直線旋轉(zhuǎn),圓內(nèi),且圓,內(nèi)的射影分別為橢圓.記橢圓,的離心率分別為,,則的取值范圍是(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案