【題目】如圖,四棱錐S=ABCD的底面是正方形,SD⊥平面ABCD,SD=AD=a,點E是SD上的點,且DE=a(0<≦1). w.w.w..c.o.m
(Ⅰ)求證:對任意的(0、1),都有AC⊥BE:
(Ⅱ)若二面角C-AE-D的大小為600C,求的值。
【答案】(Ⅰ) 略(Ⅱ)
【解析】
運用三垂線定理證明線線垂直,第二問是告訴二面角求參數(shù)的值,這是二面角的逆向問題,仍然要作出二面角,求二面角才能解出參數(shù)。這題除了用傳統(tǒng)的證法與求角的方法外,也可以應(yīng)用空間向量來解決。
解:(Ⅰ)證發(fā)1:連接BD,由底面是正方形可得ACBD。
SD平面ABCD,BD是BE在平面ABCD上的射影,
由三垂線定理得ACBE.
(II)解法1:SD平面ABCD,CD平面ABCD,SDCD.
又底面ABCD是正方形,CDAD,又SDAD=D,CD平面SAD。
過點D在平面SAD內(nèi)做DFAE于F,連接CF,則CFAE,
故CFD是二面角C-AE-D 的平面角,即CFD=60°
在Rt△ADE中,AD=, DE=, AE=。
于是,DF=
在Rt△CDF中,由cot60°=
得, 即=3解得。
科目:高中數(shù)學(xué) 來源: 題型:
【題目】要建造一段長的高速公路,工程隊需要把380名施工人員分為兩組,一組負責(zé)的軟土地帶的施工,另一組完成剩下的硬土地帶的施工.根據(jù)工程技術(shù)人員的測算,軟、硬地帶每米公路的工程量分別為50人·天和30人·天.
(1)設(shè)參與軟土地帶工作的人數(shù)為人,試分別寫出在軟、硬地帶筑路的時間關(guān)于的函數(shù)表達式;
(2)問如何安排兩組的人數(shù),才能使全隊筑路工期最短?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的等腰梯形ABCD中,,,E為CD中點.若沿AE將三角形DAE折起,并連接DB,DC,得到如圖所示的幾何體D-ABCE,在圖中解答以下問題:
(1)設(shè)G為AD中點,求證:平面GBE;
(2)若平面平面ABCE,且F為AB中點,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】海水養(yǎng)殖場進行某水產(chǎn)品的新、舊網(wǎng)箱養(yǎng)殖方法的產(chǎn)量對比,收獲時各隨機抽取了100個網(wǎng)箱,測量各箱水產(chǎn)品的產(chǎn)量(單位:kg), 其頻率分布直方圖如下:
(1)記A表示事件“舊養(yǎng)殖法的箱產(chǎn)量低于50 kg”,估計A的概率;
(2)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99%的把握認為箱產(chǎn)量與養(yǎng)殖方法有關(guān):
箱產(chǎn)量<50 kg | 箱產(chǎn)量≥50 kg | |
舊養(yǎng)殖法 | ||
新養(yǎng)殖法 |
(3)根據(jù)箱產(chǎn)量的頻率分布直方圖,對這兩種養(yǎng)殖方法的優(yōu)劣進行比較.
附:
P() | 0.050 0.010 0.001 |
k | 3.841 6.635 10.828 |
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓中心在原點,焦點在軸上,離心率,點分別為橢圓的左右焦點,過右焦點且垂直于長軸的弦長為.
(1)求橢圓的標準方程;
(2)過橢圓左焦點作直線,交橢圓于兩點,若,求直線的傾斜角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四棱錐P-ABCD中,AP⊥平面PCD,AD∥BC,AB=BC=AD,E,F分別為線段AD,PC的中點.
(1)求證:AP∥平面BEF;
(2)求證:BE⊥平面PAC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)。
(I)當(dāng)時,證明:當(dāng)時,;
(II)若當(dāng)時,恒成立,求a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四面體ABCD中,與都是邊長為8的正三角形,點O是線段BC的中點.
(1)證明:.
(2)若為銳角,且四面體ABCD的體積為求側(cè)面ACD的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在含有個元素的集合中,若這個元素的一個排列(,,…,)滿足,則稱這個排列為集合的一個錯位排列(例如:對于集合,排列是的一個錯位排列;排列不是的一個錯位排列).記集合的所有錯位排列的個數(shù)為.
(1)直接寫出,,,的值;
(2)當(dāng)時,試用,表示,并說明理由;
(3)試用數(shù)學(xué)歸納法證明:為奇數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com