8.已知圓C:(x-3)2+(y-4)2=25,圓C上的點(diǎn)到直線l:3x+4y+m=0(m<0)的最短距離為1,若點(diǎn)N(a,b)在直線l位于第一象限的部分,則$\frac{1}{a}+\frac{1}$的最小值為$\frac{{7+4\sqrt{3}}}{55}$.

分析 求出圓的圓心與半徑,利用圓C上的點(diǎn)到直線l:3x+4y+m=0(m<0)的最短距離為1,求出m,然后推出a,b的方程,利用基本不等式求解表達(dá)式的最值.

解答 解:圓C:(x-3)2+(y-4)2=25,圓心坐標(biāo)(3,4),半徑為5,
圓C上的點(diǎn)到直線l:3x+4y+m=0(m<0)的最短距離為1,
可得$\frac{|9+16+m|}{\sqrt{9+16}}$=6,解得m=-55.
點(diǎn)N(a,b)在直線l位于第一象限的部分,
可得3a+4b=55.
則$\frac{1}{a}+\frac{1}$=$\frac{1}{55}$($\frac{1}{a}+\frac{1}$)(3a+4b)=$\frac{1}{55}$[7+$\frac{4b}{a}$+$\frac{3a}$]≥$\frac{1}{55}$(7+$2\sqrt{\frac{4b}{a}•\frac{3a}}$)=$\frac{{7+4\sqrt{3}}}{55}$.當(dāng)且僅當(dāng)3a2=4b2,a=$\frac{55(2\sqrt{3}-3)}{3}$取等號.
故答案為:$\frac{{7+4\sqrt{3}}}{55}$.

點(diǎn)評 本題考查與與圓的方程的應(yīng)用,基本不等式求解表達(dá)式的最值,考查分析問題解決問題的能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.為選拔選手參加“中國漢字聽寫大會(huì)”,某中學(xué)舉行了一次“漢字聽寫大賽”活動(dòng).為了了解本次競賽學(xué)生的成績情況,從中抽取了部分學(xué)生的分?jǐn)?shù)(得分取正整數(shù),滿分為100 分)作為樣本(樣本容量為n )進(jìn)行統(tǒng)計(jì).按照[50,60),[60,70)[70,80)[80,90)[90,100)的分組作出頻率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖(圖中僅列出了得分在[50,60),[90,100)的數(shù)據(jù)).
(1)求樣本容量n 和頻率分布直方圖中的x,y 的值;
(2)在選取的樣本中,從競賽成績在80分以上的學(xué)生中隨機(jī)抽取2 名學(xué)生參加“中國漢字聽寫大會(huì)”,求所抽取的2名學(xué)生中至少有一人得分在[90,100)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知數(shù)列{an}和{bn}滿足a1a2a3…an=2${\;}^{_{n}}$(n∈N*).若{an}是各項(xiàng)為正數(shù)的等比數(shù)列,且a1=2,b3=b2+3.
(Ⅰ)求an與bn;
(Ⅱ)設(shè)cn=$\frac{1}{a_n}-\frac{1}{b_n}$,求數(shù)列{cn}的前n項(xiàng)和為Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖是一個(gè)正三棱柱挖去一個(gè)圓柱得到的一個(gè)幾何體的三視圖,則該幾何體的體積與挖去的圓柱的體積比為( 。
A.$\frac{{3\sqrt{3}}}{π}-1$B.$\frac{{3\sqrt{3}}}{π}-\frac{1}{3}$C.$\frac{{3\sqrt{3}}}{π}$D.$\frac{{3\sqrt{3}}}{π}+1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)函數(shù)f(x)的定義域?yàn)镈,若f(x)滿足條件:存在[a,b]⊆D(a<b),使f(x)在[a,b]上的值域也是[a,b],則稱為“優(yōu)美函數(shù)”,若函數(shù)$f(x)={log_2}({4^x}+t)$為“優(yōu)美函數(shù)”,則t的取值范圍是(  )
A.$(\frac{1}{4},+∞)$B.(0,1)C.$(0,\frac{1}{2})$D.$(0,\frac{1}{4})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.6名學(xué)生和2位老師站成一排合影,其中2位老師不相鄰的站法有( 。┓N.
A.30228B.30232C.30236D.30240

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若圓x2+y2+dx+ey+f=0與兩坐標(biāo)軸都相切,則常數(shù)d,e,f之間的關(guān)系是(  )
A.d≠0且e2=4fB.d≠0且e2≠4fC.d=e且e2≠4fD.d2=e2=4f>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某廠商調(diào)查甲、乙兩種不同型號電視在10個(gè)賣場的銷售量(單位:臺(tái)),并根據(jù)這10個(gè)賣場的銷售情況,得到如圖所示的莖葉圖.為了鼓勵(lì)賣場,在同型號電視機(jī)的銷售中,該廠商將銷售量高于數(shù)據(jù)平均數(shù)的賣場命名為該型號電視機(jī)的“星級賣場”
(1)求在這10個(gè)賣場中,甲型號電視機(jī)的“星級賣場”的個(gè)數(shù);
(2)若在這10個(gè)賣場中,乙型號電視機(jī)銷售量的平均數(shù)為26.7,求a>b的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若${({\sqrt{x}-\frac{1}{{\root{3}{x}}}})^n}$展開式中存在常數(shù)項(xiàng),則n的最小值為5.

查看答案和解析>>

同步練習(xí)冊答案