已知函數(shù)f(x)=xlnx+2xf′(1),試比較f(e)與f(1)的大小關(guān)系.
考點(diǎn):導(dǎo)數(shù)的運(yùn)算
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:通過求導(dǎo)先求出f′(1),得到函數(shù)f(x)的表達(dá)式,再將x=e,x=1代入表達(dá)式,從而比較f(e),f(1)的大。
解答: 解:由題意得f′(x)=1+lnx+2f′(1),
令x=1得f′(1)=1+ln1+2f′(1)即f′(1)=-1,
所以f(x)=xlnx-2x,
所以f(e)=elne-2e=-e,f(1)=-2,
得f(e)<f(1).
點(diǎn)評(píng):本題考查了導(dǎo)數(shù)的應(yīng)用,考查了函數(shù)求值問題,是一道基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某市政府為了打造宜居城市,計(jì)劃在公園內(nèi)新建一個(gè)如圖所示的矩形ABCD的休閑區(qū),內(nèi)不是矩形景觀區(qū)A1B1C1D1,景觀區(qū)四周是人行道,已知景觀區(qū)的面積為8000平方米,人行道的寬為5米(如圖所示).
(1)設(shè)景觀區(qū)的寬B1C1的長度為x(米),求休閑區(qū)ABCD所占面積S關(guān)于x的函數(shù);
(2)規(guī)劃要求景觀區(qū)的寬B1C1的長度不能超過50米,如何設(shè)計(jì)景觀區(qū)的長和寬,才能使休閑區(qū)ABCD所占面積最小?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線3x+4y-3=0與直線6x+my+14=0平行,則它們之間的距離是( 。
A、1
B、2
C、
1
2
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l過點(diǎn)P(3,2).
(1)若直線l在兩坐標(biāo)軸上的截距相等,求直線l的方程;
(2)若直線l與x軸、y軸的正半軸分別交于A、B兩點(diǎn),如圖所示,求△ABO的面積的最小值及此時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A={x|-2≤x≤4},B={x|x2-ax-a≤0},若B⊆A,則實(shí)數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z=
1+i
i2015
在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|a-1<x<2a+1},B={x|0<x<1},
(1)若A∩B=∅,求a的取值范圍;
(2)若A∪B=B,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x>0,y>0,x+y=1,n∈N*,求證:x2n+y2n
1
22n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

隨著經(jīng)濟(jì)社會(huì)的發(fā)展,消費(fèi)者對(duì)食品安全的關(guān)注度越來越高,通過隨機(jī)詢問某地區(qū)110名居民在購買食品時(shí)是否看生產(chǎn)日期與保質(zhì)期等內(nèi)容,得到如下的列聯(lián)表:
60歲以下60歲以上總計(jì)
看生產(chǎn)日期與保質(zhì)期503080
不看生產(chǎn)日期與保質(zhì)期102030
總計(jì)6050110
(1)從這50名60歲以上居民中按是否看生產(chǎn)日期與保質(zhì)期采取分層抽樣,抽取一個(gè)容量為5的樣本,問樣本中看與不看生產(chǎn)日期與保質(zhì)期的60歲以上居民各有多少名?
(2)根據(jù)以上列聯(lián)表,在犯錯(cuò)誤的概率不超過1%的情況下,是否有把握認(rèn)為“該地區(qū)居民的年齡與在購買食品時(shí)是否看生產(chǎn)日期與保質(zhì)期”有關(guān)?

查看答案和解析>>

同步練習(xí)冊(cè)答案