已知p:函數(shù)f(x)=x2-2mx+1在(1,+∞)上是增函數(shù),q:函數(shù)g(x)=x+m在區(qū)間[-1,1]上有零點(diǎn),那么p是q的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件
考點(diǎn):必要條件、充分條件與充要條件的判斷
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用,簡(jiǎn)易邏輯
分析:根據(jù)函數(shù)的性質(zhì)以及充分條件和必要條件的定義即可得到結(jié)論.
解答: 解:若函數(shù)f(x)=x2-2mx+1在(1,+∞)上是增函數(shù),則-
-2m
2
=m≤1
,即p:m≤1,
函數(shù)g(x)=x+m在區(qū)間[-1,1]上有零點(diǎn),則
g(1)≥0
g(-1)≤0

m+1≥0
m-1≤0
,解得-1≤m≤1,即q:-1≤m≤1,
則p是q的必要不充分條件,
故選:B
點(diǎn)評(píng):本題主要考查充分條件和必要條件的判斷,根據(jù)函數(shù)的性質(zhì)求出m的取值范圍是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax+1,函數(shù)g(x)=loga(x-1)(a>0且a≠1),在同一直角坐標(biāo)系中,它們的圖象可能是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)y=sin(
x
2
-
π
3
)
取最大值時(shí)自變量的取值集合
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l1:y=2x-2,l2:y=λx+1,且l1∥l2,則實(shí)數(shù)λ的值是( 。
A、-2
B、-
1
2
C、
1
2
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以點(diǎn)A(-1,4)、B(3,2)為直徑的兩個(gè)端點(diǎn)的圓的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

空間直角坐標(biāo)系中,A(2,3,5),B(3,5,7),則A,B兩點(diǎn)間的距離為( 。
A、2B、3C、6D、9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

“x>1”是“x>
1
x
”的( 。
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

log65+log6
1
5
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=(mx+1)(lnx-1).
(1)若m=1,求曲線y=f(x)在x=1的切線方程;
(2)若函數(shù)f(x)在(0,+∞)上是增函數(shù),求實(shí)數(shù)m的取值范圍;
(3)設(shè)點(diǎn)P(m,0),A(x1,f(x1)),B(x2,f(x2))滿足lnx1•lnx2=ln(x1•x2)(x1≠x2),
判斷是否存在實(shí)數(shù)m,使得∠APB為直角?說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案