【題目】已知拋物線的頂點為原點,其焦點到直線的距離為.設(shè)為直線上的點,過點作拋物線的兩條切線,其中為切點.
(1) 求拋物線的方程;
(2) 當(dāng)點為直線上的定點時,求直線的方程;
(3) 當(dāng)點在直線上移動時,求的最小值.
【答案】(Ⅰ) (Ⅱ) (Ⅲ)
【解析】試題分析:(1)設(shè)拋物線的方程為,利用點到直線的距離,求出,得到拋物線方程;(2)對拋物線方程求導(dǎo),求出切線的斜率,用點斜式寫出切線方程,化成一般式,找出共同點,得到直線的方程;(3)由拋物線定義可知,聯(lián)立直線與拋物線方程,消去,得到一個關(guān)于的一元二次方程,由韋達(dá)定理求得的值,還有,將表示成的二次函數(shù)的形式,再求出最值.
試題解析: 解:(1)依題意,設(shè)拋物線的方程為,由結(jié)合,
解得,所以拋物線的方程為.
(2)拋物線的方程為,即,求導(dǎo)得,
設(shè) (其中)則切線的斜率分別為,
所以切線的方程為,即,即,
同理可得切線的方程為,
因為切線均過點,所以, ,
所以為方程的兩組解,
所以直線的方程為.
(3)由拋物線定義可知,
聯(lián)立方程,消去整理得.
由一元二次方程根與系數(shù)的關(guān)系可得,
所以
又點在直線上,所以,
所以,
所以當(dāng)時, 取得最小值,且取得最小值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,,,兩兩互相垂直,,點,分別在側(cè)面、棱上運動,,為線段中點,當(dāng),運動時,點的軌跡把三棱錐分成上、下兩部分的體積之比等于( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形中,,,,四邊形為矩形,平面平面,.
(1)求證:平面;
(2)在線段上是否存在點,使得平面與平面所成銳二面角的平面角為,且滿足?若不存在,請說明理由;若存在,求出的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解人們對“延遲退休年齡政策”的態(tài)度,某部門從年齡在歲到歲的人群中隨機調(diào)查了人,并得到如圖所示的頻率分布直方圖,在這人中不支持“延遲退休年齡政策”的人數(shù)與年齡的統(tǒng)計結(jié)果如圖所示:
年齡 | 不支持“延遲退休年齡政策”的人數(shù) |
(1)由頻率分布直方圖,估計這人年齡的平均數(shù);
(2)根據(jù)以上統(tǒng)計數(shù)據(jù)填寫下面的列聯(lián)表,據(jù)此表,能否在犯錯誤的概率不超過的前提下,認(rèn)為以歲為分界點的不同人群對“延遲退休年齡政策”的態(tài)度存在差異?
45歲以下 | 45歲以上 | 總計 | |
不支持 | |||
支持 | |||
總計 |
附:
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)在R上存在導(dǎo)數(shù) ,有,在 上, ,若 ,則實數(shù)m的取值范圍為( )
A.B.
C.[-3,3]D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如上圖所示,在正方體中, 分別是棱的中點, 的頂點在棱與棱上運動,有以下四個命題:
A.平面 ; B.平面⊥平面;
C. 在底面上的射影圖形的面積為定值;
D. 在側(cè)面上的射影圖形是三角形.其中正確命題的序號是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】產(chǎn)能利用率是指實際產(chǎn)出與生產(chǎn)能力的比率,工r產(chǎn)能利用率是衡量工業(yè)生產(chǎn)經(jīng)營狀況的重要指標(biāo).下圖為國家統(tǒng)計局發(fā)布的2015年至2018年第2季度我國工業(yè)產(chǎn)能利用率的折線圖.
在統(tǒng)計學(xué)中,同比是指本期統(tǒng)計數(shù)據(jù)與上一年同期統(tǒng)計數(shù)據(jù)相比較,例如2016年第二季度與2015年第二季度相比較;環(huán)比是指本期統(tǒng)計數(shù)據(jù)與上期統(tǒng)計數(shù)據(jù)相比較,例如2015年第二季度與2015年第一季度相比較.
據(jù)上述信息,下列結(jié)論中正確的是( ).
A. 2015年第三季度環(huán)比有所提高B. 2016年第一季度同比有所提高
C. 2017年第三季度同比有所提高D. 2018年第一季度環(huán)比有所提高
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在甲地,隨著人們生活水平的不斷提高,進(jìn)入電影院看電影逐漸成為老百姓的一種娛樂方式.我們把習(xí)慣進(jìn)入電影院看電影的人簡稱為“有習(xí)慣”的人,否則稱為“無習(xí)慣的人”.某電影院在甲地隨機調(diào)查了100位年齡在15歲到75歲的市民,他們的年齡的頻數(shù)分布和“有習(xí)慣”的人數(shù)如下表:
(1)以年齡45歲為分界點,請根據(jù)100個樣本數(shù)據(jù)完成下面列聯(lián)表,并判斷是否有的把握認(rèn)為“有習(xí)慣”的人與年齡有關(guān);
(2)已知甲地從15歲到75歲的市民大約有11萬人,以頻率估計概率,若每張電影票定價為元,則在“有習(xí)慣”的人中約有的人會買票看電影(為常數(shù)).已知票價定為30元的某電影,票房達(dá)到了 69.3萬元.某新影片要上映,電影院若將電影票定價為25元,那么該影片票房估計能達(dá)到多少萬元?
參考公式:,其中.
參考臨界值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為常數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若有兩個相異零點,求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com