【題目】某藝校在一天的6節(jié)課中隨機(jī)安排語(yǔ)文、數(shù)學(xué)、外語(yǔ)三門文化課和其他三門藝術(shù)課各1節(jié),則在課程表上的相鄰兩節(jié)文化課之間最多間隔1節(jié)藝術(shù)課的概率為(用數(shù)字作答).
【答案】
【解析】解:把語(yǔ)文、數(shù)學(xué)、外語(yǔ)三門文化課排列,有 種方法,這三門課中間存在兩個(gè)空,在兩個(gè)空中,
①若每個(gè)空各插入1節(jié)藝術(shù)課,則排法種數(shù)為 =72,
②若兩個(gè)空中只插入1節(jié)藝術(shù)課,則排法種數(shù)為 ( ) =216,
③若語(yǔ)文、數(shù)學(xué)、外語(yǔ)三門文化課相鄰排列,把三門文化課捆綁為為一個(gè)整體,
然后和三門藝術(shù)課進(jìn)行排列,則排法種數(shù)為 =144,
而所有的排法共有 =720種,
故在課表上的相鄰兩節(jié)文化課之間最多間隔1節(jié)藝術(shù)課的概率為 = ,
故答案為 .
三門文化課排列,中間有兩個(gè)空,若每個(gè)空各插入1節(jié)藝術(shù)課,則排法種數(shù)為 ,若兩個(gè)空中只插入1節(jié)藝術(shù)課,則排法種數(shù)為 ( ) =216,三門文化課中相鄰排列,則排法種數(shù)為 =144,而所有的排法共有 =720種,由此求得所求事件的概率.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中,底面為平行四邊形, 底面, 是棱的中點(diǎn),
且.
(1)求證: 平面;
(2)如果是棱上一點(diǎn),且直線與平面所成角的正弦值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知兩條直線l1:y=a和l2:y= (其中a>0),若直線l1與函數(shù)y=|log4x|的圖象從左到右相交于點(diǎn)A,B,直線l2與函數(shù)y=|log4x|的圖象從左到右相交于點(diǎn)C,D.記線段AC和BD在x軸上的投影長(zhǎng)度分別為 m,n.令f(a)=log4 .
(1)求f(a)的表達(dá)式;
(2)當(dāng)a變化時(shí),求出f(a)的最小值,并指出取得最小值時(shí)對(duì)應(yīng)的a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,一根水平放置的長(zhǎng)方體枕木的安全負(fù)荷與它的厚度d的平方和寬度a的乘積成正比,與它的長(zhǎng)度l的平方成反比.
(1)在a>d>0的條件下,將此枕木翻轉(zhuǎn)90°(即寬度變?yōu)榱撕穸龋,枕木的安全?fù)荷會(huì)發(fā)生變化嗎?變大還是變小?
(2)現(xiàn)有一根橫截面為半圓(半圓的半徑為R= )的柱形木材,用它截取成橫截面為長(zhǎng)方形的枕木,其長(zhǎng)度即為枕木規(guī)定的長(zhǎng)度l,問(wèn)橫截面如何截取,可使安全負(fù)荷最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】共享單車是指企業(yè)在校園、地鐵站點(diǎn)、公交站點(diǎn)、居民區(qū)、商業(yè)區(qū)、公共服務(wù)區(qū)等提供自行車單車共享服務(wù),是共享經(jīng)濟(jì)的一種新形態(tài),一個(gè)共享單車企業(yè)在某個(gè)城市就“一天中一輛單車的平均成本(單位:元)與租用單車的數(shù)量(單位:車輛)之間的關(guān)系”進(jìn)行調(diào)查研究,在調(diào)查過(guò)程中進(jìn)行了統(tǒng)計(jì),得出相關(guān)數(shù)據(jù)見下表:
租用單車數(shù)量(千輛) | 2 | 3 | 4 | 5 | 8 |
每天一輛車平均成本(元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 |
根據(jù)以上數(shù)據(jù),研究人員分別借助甲、乙兩種不同的回歸模型,得到兩個(gè)回歸方程,方程甲: ,方程乙: .
(1)為了評(píng)價(jià)兩種模型的擬合效果,完成以下任務(wù):
①完成下表(計(jì)算結(jié)果精確到0.1)(備注: , 稱為相應(yīng)于點(diǎn)的殘差(也叫隨機(jī)誤差));
租用單車數(shù)量(千輛) | 2 | 3 | 4 | 5 | 8 | |
每天一輛車平均成本(元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 | |
模型甲 | 估計(jì)值 | 2.4 | 2.1 | 1.6 | ||
殘差 | 0 | 0.1 | ||||
模型乙 | 估計(jì)值 | 2.3 | 2 | 1.9 | ||
殘差 | 0.1 | 0 | 0 |
②分別計(jì)算模型甲與模型乙的殘差平方和及,并通過(guò)比較, 的大小,判斷哪個(gè)模型擬合效果更好.
(2)這個(gè)公司在該城市投放共享單車后,受到廣大市民的熱烈歡迎,共享單車常常供不應(yīng)求,于是該公司研究是否增加投放,根據(jù)市場(chǎng)調(diào)查,這個(gè)城市投放8千輛時(shí),該公司平均一輛單一天能收入10元,6元收入的概率分別為0.6,0.4;投放1萬(wàn)輛時(shí),該公司平均一輛單車一天能收入10元,6元收入的概率分別為0.4,0.6,問(wèn)該公司應(yīng)該投放8千輛還是1萬(wàn)輛能獲得更多利潤(rùn)?(按(1)中擬合效果較好的模型計(jì)算一天中一輛單車的平均成本,利潤(rùn)=收入—成本).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)f(x)=aex+ +b(a>0).
(1)求f(x)在[0,+∞)上的最小值;
(2)設(shè)曲線y=f(x)在點(diǎn)(2,f(2))的切線方程為3x﹣2y=0,求a、b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在實(shí)數(shù)集R上的可導(dǎo)函數(shù)f(x),滿足f(x+2)是奇函數(shù),且 >2,則不等式f(x)> x﹣1的解集是( )
A.(﹣∞,2)
B.(2,+∞)
C.(0,2)
D.(﹣∞,1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若以曲線上任意一點(diǎn)為切點(diǎn)作切線,曲線上總存在異于的點(diǎn),以點(diǎn)為切點(diǎn)作切線,且,則稱曲線具有“可平行性”,現(xiàn)有下列命題:
①函數(shù)的圖象具有“可平行性”;
②定義在的奇函數(shù)的圖象都具有“可平行性”;
③三次函數(shù)具有“可平行性”,且對(duì)應(yīng)的兩切點(diǎn), 的橫坐標(biāo)滿足;
④要使得分段函數(shù)的圖象具有“可平行性”,當(dāng)且僅當(dāng).
其中的真命題個(gè)數(shù)有()
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com